Integrated Analysis of Transcriptome and Metabolome Reveals New Insights into the Molecular Mechanism Underlying the Color Differences in Wolfberry (Lycium barbarum)

被引:4
|
作者
Duan, Linyuan [1 ]
Zhang, Bo [1 ]
Dai, Guoli [1 ]
He, Xinru [1 ]
Zhou, Xuan [1 ]
Huang, Ting [1 ]
Liang, Xiaojie [1 ]
Zhao, Jianhua [1 ]
Qin, Ken [1 ]
机构
[1] Ningxia Acad Agr & Forestry Sci, Inst Wolfberry Sci, Yinchuan 750002, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 07期
基金
中国国家自然科学基金;
关键词
metabolomics; transcriptomics; flavonoid biosynthesis; anthocyanin biosynthesis; ANTHOCYANINS; BIOSYNTHESIS; PROGRESS;
D O I
10.3390/agronomy13071926
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Wolfberry (Lycium barbarum L.) is a small Solanaceae shrub with medicinal and edible homology, and widely used as ethnobotanical medicine and nutraceutical food. The wolfberry fruits mainly have red, purple, and yellow phenotypes. Wolfberries are rich in flavonoids, which are natural water-soluble pigments that endow a variety of colors in plants There are very few investigations on mechanism of flavonoids biosynthesis and fruit coloring reported about wolfberry. The widely targeted metabolome and transcriptome analysis were performed to obtain metabolite and gene expression profiles of red, yellow, and purple wolfberries and to explain the underlying molecular mechanism of the color differences in wolfberry. As result, metabolomics analysis revealed that the bluish anthocyanins Malvidin and petunidin trended to accumulate in purple wolf-berry, while red and yellow wolfberries trended to accumulate more yellowish flavonoids. And transcriptome analysis showed that flavonoid synthesis-related genes, such as CHS, F3H, ANS and DFR, and several MYB and bHLH genes were differentially expressed among wolfberries in different colors: most of them were more highly expressed in purple wolfberries than in red and yellow ones. In conclusion, the different flavonoids' accumulation patterns may result in the different fruit colors of wolfberry, and the MYB or bHLH transcription factors could regulate the expression of flavonoids biosynthesis related genes to change the composition of flavonoids or anthocyanins in wolfberry fruits and result in varied fruit colors. These findings provide new insights into the underlying molecular mechanism of the fruit color differences in wolfberry and provide new ideas for molecular breeding of wolfberry.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanisms underlying taproot thickening in Panax notoginseng
    Xue-Jiao Li
    Jian-Li Yang
    Bing Hao
    Ying-Chun Lu
    Zhi-Long Qian
    Ying Li
    Shuang Ye
    Jun-Rong Tang
    Mo Chen
    Guang-Qiang Long
    Yan Zhao
    Guang-Hui Zhang
    Jun-Wen Chen
    Wei Fan
    Sheng-Chao Yang
    BMC Plant Biology, 19
  • [42] Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanisms underlying taproot thickening in Panax notoginseng
    Li, Xue-Jiao
    Yang, Jian-Li
    Hao, Bing
    Lu, Ying-Chun
    Qian, Zhi-Long
    Li, Ying
    Ye, Shuang
    Tang, Jun-Rong
    Chen, Mo
    Long, Guang-Qiang
    Zhao, Yan
    Zhang, Guang-Hui
    Chen, Jun-Wen
    Fan, Wei
    Yang, Sheng-Chao
    BMC PLANT BIOLOGY, 2019, 19 (01)
  • [43] Insights into drought stress response mechanism of tobacco during seed germination by integrated analysis of transcriptome and metabolome
    Ren, Xiaomin
    Yang, Chenkai
    Zhu, Xianxin
    Yi, Pengfei
    Jiang, Xizhen
    Yang, Jiashuo
    Xiang, Shipeng
    Li, Yunxia
    Yu, Bei
    Yan, Weijie
    Li, Xiaoxu
    Li, Yangyang
    Hu, Risheng
    Hu, Zhengrong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 209
  • [44] Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
    Hu, Jiahui
    Wang, Juan
    Muhammad, Tayeb
    Yang, Tao
    Li, Ning
    Yang, Haitao
    Yu, Qinghui
    Wang, Baike
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [45] Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.)
    Liu, Yuhua
    Lv, Junheng
    Liu, Zhoubin
    Wang, Jing
    Yang, Bozhi
    Chen, Wenchao
    Ou, Lijun
    Dai, Xiongze
    Zhang, Zhuqing
    Zou, Xuexiao
    FOOD CHEMISTRY, 2020, 306
  • [46] Integrated transcriptome, metabolome and phytohormone analysis reveals developmental differences between the first and secondary flowering in Castanea mollissima
    Qin, Cai
    Du, Tingting
    Zhang, Ruiyu
    Wang, Qiujie
    Liu, Yang
    Wang, Tianyi
    Cao, Hongyan
    Bai, Qian
    Zhang, Yu
    Su, Shuchai
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [47] Integrated Metabolome and Transcriptome Analysis Unveils the Underlying Molecular Response of Panax ginseng Plants to the Phytophthora cactorum Infection
    Kan, Hong
    Qu, Shuai
    Dong, Kai
    Wang, Shihan
    Xu, Chen
    Wang, Yingping
    Hua, Shuang
    AGRICULTURE-BASEL, 2023, 13 (02):
  • [48] Comparative Transcriptome and Widely Targeted Metabolome Analysis Reveals the Molecular Mechanism of Powdery Mildew Resistance in Tomato
    Liu, Wenjuan
    Wang, Xiaomin
    Song, Lina
    Yao, Wenkong
    Guo, Meng
    Cheng, Guoxin
    Guo, Jia
    Bai, Shengyi
    Gao, Yanming
    Li, Jianshe
    Kang, Zhensheng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)
  • [49] Integrative analysis of the metabolome and transcriptome reveals the molecular regulatory mechanism of isoflavonoid biosynthesis in Ormosia henryi Prain
    Wang, Jiaqi
    Li, Lu
    Wang, Zhihua
    Feng, Anran
    Li, Huiling
    Qaseem, Mirza Faisal
    Liu, Liting
    Deng, Xiaomei
    Wu, Ai-Min
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 246
  • [50] Comparative analysis of transcriptome and metabolome explores the underlying mechanism of pod color variation in pea (Pisum sativum L.)
    Zhong, Xiaojuan
    Yang, Mei
    Zhang, Xiaoyan
    Fan, Yuanfang
    Wang, Xianshu
    Xiang, Chao
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2024, 33 (02) : 144 - 156