Positive radial solutions for the problem with Minkowski-curvature operator on an exterior domain

被引:0
作者
Zhao, Zhongzi [1 ]
Yan, Meng [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
基金
中国国家自然科学基金;
关键词
mean curvature operator; exterior domain; singular; positive radial solutions; sub and super solutions; MEAN-CURVATURE; SPACELIKE HYPERSURFACES; BIFURCATION;
D O I
10.3934/math.20231052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the problem with Minkowski-curvature operator on an exterior domain ⎨ ⎪ ⎪⎪⎪⎧ ⎪⎪⎪⎪⎩ ) -div( backward difference u & RADIC;1-| backward difference u|2 = & lambda;K(| x|) f(u) u & gamma;in Bc , partial differential u partial differential n| partial differential Bc = 0 , lim |x|& RARR;& INFIN;u(x) = 0 , (P) where 0 & LE; & gamma; < 1, Bc = {x & ISIN; RN : |x| > R} is a exterior domain in RN , N > 2, R > 0, K & ISIN; R & INFIN; C([R , & INFIN;) , (0 , & INFIN;)) is such that R rK(r)dr < & INFIN;, the function f : [0 , & INFIN;) & RARR; (0 , & INFIN;) is a continuous function such that lim s & RARR;& INFIN; positive radial solution for all & lambda; > 0. The proof of our main result is based upon the method of sub and super solutions. f (s) s & gamma;+1 = 0 and & lambda; > 0 is a parameter. We show that problem (P) has at least one
引用
收藏
页码:20654 / 20664
页数:11
相关论文
共 16 条
[1]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[2]  
Bereanu C, 2009, P AM MATH SOC, V137, P161
[3]   Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (04) :644-659
[4]   Multiple solutions for Neumann and periodic problems with singular φ-Laplacian [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (11) :3226-3246
[5]   Spectrum and bifurcation for semilinear elliptic problems in RN [J].
Dai, Guowei ;
Yao, Jinghua ;
Li, Fengquan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) :5939-5967
[6]   H-SURFACES IN LORENTZIAN MANIFOLDS [J].
GERHARDT, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (04) :523-553
[7]   EXISTENCE OF INFINITELY MANY SOLUTIONS FOR SEMILINEAR PROBLEMS ON EXTERIOR DOMAINS [J].
Iaia, Joseph .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (09) :4269-4284
[8]   Existence and nonexistence of sign-changing solutions for singular semilinear equations on exterior domains [J].
Iaia, Joseph A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 217
[9]   MULTIPLICITY RESULTS FOR CLASSES OF SINGULAR PROBLEMS ON AN EXTERIOR DOMAIN [J].
Ko, Eunkyoung ;
Lee, Eun Kyoung ;
Shivaji, R. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (11-12) :5153-5166
[10]  
Ma RY, 2023, ANN FUNCT ANAL, V14, DOI 10.1007/s43034-022-00226-0