An asymptotic expansion of eigenpolynomials for a class of linear differential operators

被引:0
作者
Borrego-Morell, Jorge A. [1 ]
机构
[1] Univ Fed Rio De Janeiro, Dept Matemat, Campus UFRJ Duque Caxias Prof Geraldo Cidade, Duque De Caxias, RJ, Brazil
关键词
asymptotic expansions; exactly solvable operators; ordinary differential equations; polynomials eigenfunctions; WKB solution; POLYNOMIAL EIGENFUNCTIONS; MECHANICS;
D O I
10.1111/sapm.12613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider an M-th order linear differential operator, M >= 2, L-(M) =Sigma(M)(k=0) rho(k) (z) d(k) / dz(k), where rho(k) is a monic complex polynomial such that deg[rho(M)] = M and (rho(k))(k=0)(M-1) are complex polynomials such that deg[rho(k)] <= k, 0 <= k <= M-1. It is known that the zero counting measure of its eigenpolynomials converges in the weak star sense to a measure mu. We obtain an asymptotic expansion of the eigenpolynomials of L-(M) in compact subsets out of the support of mu. In particular, we solve a conjecture posed in Masson and Shapiro [On polynomial eigenfunctions of a hypergeometric type operator. Exper Math. 2001;10:609-618].
引用
收藏
页码:923 / 956
页数:34
相关论文
共 43 条
[1]  
Ablowitz M.J., 2003, Complex Variables: Introduction and Applications, V2nd
[2]  
[Anonymous], 1999, Basic Theory of Ordinary Differential Equations, DOI [10.1007/978-1-4612-1506-6, DOI 10.1007/978-1-4612-1506-6]
[3]  
Aoki T., 1991, ICM 90 SATELLITE C P, P1, DOI 10.1007/978-4-431-68170-0_1.91,92
[4]  
Aoki T., 1994, Analyse algebrique des perturbations singulieres, P69
[5]  
Aoki T, 2009, ADV STU P M, V54, P19
[6]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[7]   On Bochner-Krall orthogonal polynomial systems [J].
Bergkvist, T ;
Rullgård, H ;
Shapiro, B .
MATHEMATICA SCANDINAVICA, 2004, 94 (01) :148-154
[8]  
Bergkvist T, 2002, MATH RES LETT, V9, P153
[9]   On asymptotics of polynomial eigenfunctions for exactly solvable differential operators [J].
Bergkvist, Tanja .
JOURNAL OF APPROXIMATION THEORY, 2007, 149 (02) :151-187
[10]   On the summability of formal solutions in Liouville-Green theory [J].
Bodine, S ;
Schäfke, R .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2002, 8 (03) :371-398