A second order asymptotic model for diffusion MRI in permeable media

被引:0
作者
Kchaou, Marwa [1 ,2 ]
Li, Jing-Rebecca [3 ]
机构
[1] ESPRIT, Sch Engn, 1, 2 rue Andre Ampere,Pole Technol,El Ghazala, Tunis 2083, Tunisia
[2] Univ Tunis El Manar, ENIT LAMSIN, BP 37,Belvederem, Tunis 1002, Tunisia
[3] Inst Polytech Paris, IDEFIX Team, Inria Saclay, UMA,ENSTA Paris, Palaiseau, France
关键词
Bloch-Torrey equation; diffusion MRI; Homogenization; higher-order diffusion tensor; GAUSSIAN WATER DIFFUSION; MAGNETIC-RESONANCE; WAVE-PROPAGATION; HOMOGENIZATION; QUANTIFICATION; NMR;
D O I
10.1051/m2an/2023043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from a reference partial differential equation model of the complex transverse water proton magnetization in a voxel due to diffusion-encoding magnetic field gradient pulses, one can use periodic homogenization theory to establish macroscopic models. A previous work introduced an asymptotic model that accounted for permeable interfaces in the imaging medium. In this paper we formulate a higher order asymptotic model to treat higher values of permeability. We explicitly solved this new asymptotic model to obtain a system of ordinary differential equations that can model the diffusion MRI signal and we present numerical results showing the improved accuracy of the new model in the regime of higher permeability.
引用
收藏
页码:1953 / 1980
页数:28
相关论文
共 50 条
[41]   Upscaled model for the diffusion/heterogeneous reaction in porous media: Boundary layer problem [J].
Le, Tien Dung ;
Moyne, Christian ;
Bourbatache, Mohamed Khaled ;
Millet, Olivier .
ADVANCES IN WATER RESOURCES, 2023, 179
[42]   Second-Order Three-Scale Asymptotic Analysis and Algorithms for Steklov Eigenvalue Problems in Composite Domain with Hierarchical Cavities [J].
Ye, Shuyu ;
Ma, Qiang ;
Tang, Qinglin ;
Cui, Junzhi ;
Li, Zhihui .
JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (03)
[43]   Inertia effects as a possible missing link between micro and macro second-order work in granular media [J].
Nicot, Francois ;
Hadda, Nejib ;
Bourrier, Franck ;
Sibille, Luc ;
Wan, Richard ;
Darve, Felix .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (10) :1252-1258
[44]   A fractional order-based mixture of central Wishart (FMoCW) model for reconstructing white matter fibers from diffusion MRI [J].
Puri, Ashishi ;
Shakya, Snehlata ;
Kumar, Sanjeev .
PSYCHIATRY RESEARCH-NEUROIMAGING, 2023, 333
[45]   Adapting the Karger model to account for finite diffusion-encoding pulses in diffusion MRI [J].
Haddar, Houssem ;
Li, Jing Rebecca ;
Schiavi, Simona .
IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (05) :779-794
[46]   Diffusion MRI biomarkers predict the outcome o irreversible electroporation in a pancreatic tumor mouse model [J].
Figini, Matteo ;
Wang, Xifu ;
Lyu, Tianchu ;
Su, Zhanliang ;
Wang, Bin ;
Sun, Chong ;
Shangguan, Junjie ;
Pan, Liang ;
Zhou, Kang ;
Ma, Quanhong ;
Yaghmai, Vahid ;
Procissi, Daniele ;
Larson, Andrew C. ;
Zhang, Zhuoli .
AMERICAN JOURNAL OF CANCER RESEARCH, 2018, 8 (08) :1615-1623
[47]   A robust diffusion tensor model for clinical applications of MRI to cartilage [J].
Ferizi, Uran ;
Ruiz, Amparo ;
Rossi, Ignacio ;
Bencardino, Jenny ;
Raya, Jose G. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (02) :1157-1164
[48]   Effects of the viscous dissipation on the Darcy-Brinkman flow: Rigorous derivation of the higher-order asymptotic model [J].
Pazanin, Igor ;
Radulovic, Marko .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
[49]   Simple numerical model with second order effects for out-of-plane loaded masonry walls [J].
Milani, Gabriele ;
Pizzolato, Marco ;
Tralli, Antonio .
ENGINEERING STRUCTURES, 2013, 48 :98-120
[50]   Asymptotic computation for transient heat conduction performance of periodic porous materials in curvilinear coordinates by the second-order two-scale method [J].
Ma, Qiang ;
Li, Zhihui ;
Yang, Zihao ;
Cui, Junzhi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) :5109-5130