A second order asymptotic model for diffusion MRI in permeable media

被引:0
作者
Kchaou, Marwa [1 ,2 ]
Li, Jing-Rebecca [3 ]
机构
[1] ESPRIT, Sch Engn, 1, 2 rue Andre Ampere,Pole Technol,El Ghazala, Tunis 2083, Tunisia
[2] Univ Tunis El Manar, ENIT LAMSIN, BP 37,Belvederem, Tunis 1002, Tunisia
[3] Inst Polytech Paris, IDEFIX Team, Inria Saclay, UMA,ENSTA Paris, Palaiseau, France
关键词
Bloch-Torrey equation; diffusion MRI; Homogenization; higher-order diffusion tensor; GAUSSIAN WATER DIFFUSION; MAGNETIC-RESONANCE; WAVE-PROPAGATION; HOMOGENIZATION; QUANTIFICATION; NMR;
D O I
10.1051/m2an/2023043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from a reference partial differential equation model of the complex transverse water proton magnetization in a voxel due to diffusion-encoding magnetic field gradient pulses, one can use periodic homogenization theory to establish macroscopic models. A previous work introduced an asymptotic model that accounted for permeable interfaces in the imaging medium. In this paper we formulate a higher order asymptotic model to treat higher values of permeability. We explicitly solved this new asymptotic model to obtain a system of ordinary differential equations that can model the diffusion MRI signal and we present numerical results showing the improved accuracy of the new model in the regime of higher permeability.
引用
收藏
页码:1953 / 1980
页数:28
相关论文
共 50 条
[31]   Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift [J].
Goncharenko, M. ;
Khilkova, L. .
JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2017, 13 (02) :154-172
[32]   A generalized order mixture model for tracing connectivity of white matter fascicles complexity in brain from diffusion MRI [J].
Puri, Ashishi ;
Kumar, Sanjeev .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2023, 40 (03) :223-237
[33]   Numerical study of a cylinder model of the diffusion MRI signal for neuronal dendrite trees [J].
Dang Van Nguyen ;
Grebenkov, Denis ;
Le Bihan, Denis ;
Li, Jing-Rebecca .
JOURNAL OF MAGNETIC RESONANCE, 2015, 252 :103-113
[34]   Effects of permeable boundaries on the diffusion-attenuated MR signal: insights from a one-dimensional model [J].
Sukstanskii, AL ;
Yablonskiy, DA ;
Ackerman, JJH .
JOURNAL OF MAGNETIC RESONANCE, 2004, 170 (01) :56-66
[35]   Asymptotic expansion and convergence theorem of control and observation on the boundary for second-order elliptic equation with highly oscillatory coefficients [J].
Cao, LQ .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (03) :417-437
[36]   MultiScale Asymptotic Analysis Method with High Accuracy for the Second Order Elliptic Equation with Oscillating Periodic Coefficients in Perforated Domain [J].
Liu, Xiao-qi ;
Zhu, Qi-Ding .
2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL I, PROCEEDINGS, 2009, :225-+
[37]   Diffusion MRI simulation in thin-layer and thin-tube media using a discretization on manifolds [J].
Van-Dang Nguyen ;
Jansson, Johan ;
Hoang Trong An Tran ;
Hoffman, Johan ;
Li, Jing-Rebecca .
JOURNAL OF MAGNETIC RESONANCE, 2019, 299 :176-187
[38]   Second-order homogenization of boundary and transmission conditions for one-dimensional waves in periodic media [J].
Cornaggia, Remi ;
Guzina, Bojan B. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 188 :88-102
[39]   Yield criteria for porous media in plane strain:: second-order estimates versus numerical results [J].
Pastor, J ;
Castañeda, PP .
COMPTES RENDUS MECANIQUE, 2002, 330 (11) :741-747
[40]   The impact of edema and fiber crossing on diffusion MRI metrics assessed in an ex vivo nerve phantom: Multi-tensor model vs. diffusion orientation distribution function [J].
Ye, Zezhong ;
Gary, Sam E. ;
Sun, Peng ;
Mustafi, Sourajit Mitra ;
Glenn, George Russell ;
Yeh, Fang-Cheng ;
Merisaari, Harri ;
Song, Chunyu ;
Yang, Ruimeng ;
Huang, Guo-Shu ;
Kao, Hung-Wen ;
Lin, Chien-Yuan ;
Wu, Yu-Chien ;
Jensen, Jens H. ;
Song, Sheng-Kwei .
NMR IN BIOMEDICINE, 2021, 34 (01)