A second order asymptotic model for diffusion MRI in permeable media

被引:0
作者
Kchaou, Marwa [1 ,2 ]
Li, Jing-Rebecca [3 ]
机构
[1] ESPRIT, Sch Engn, 1, 2 rue Andre Ampere,Pole Technol,El Ghazala, Tunis 2083, Tunisia
[2] Univ Tunis El Manar, ENIT LAMSIN, BP 37,Belvederem, Tunis 1002, Tunisia
[3] Inst Polytech Paris, IDEFIX Team, Inria Saclay, UMA,ENSTA Paris, Palaiseau, France
关键词
Bloch-Torrey equation; diffusion MRI; Homogenization; higher-order diffusion tensor; GAUSSIAN WATER DIFFUSION; MAGNETIC-RESONANCE; WAVE-PROPAGATION; HOMOGENIZATION; QUANTIFICATION; NMR;
D O I
10.1051/m2an/2023043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from a reference partial differential equation model of the complex transverse water proton magnetization in a voxel due to diffusion-encoding magnetic field gradient pulses, one can use periodic homogenization theory to establish macroscopic models. A previous work introduced an asymptotic model that accounted for permeable interfaces in the imaging medium. In this paper we formulate a higher order asymptotic model to treat higher values of permeability. We explicitly solved this new asymptotic model to obtain a system of ordinary differential equations that can model the diffusion MRI signal and we present numerical results showing the improved accuracy of the new model in the regime of higher permeability.
引用
收藏
页码:1953 / 1980
页数:28
相关论文
共 50 条
[21]   High-order asymptotic solutions for gas transport in heterogeneous media with multiple spatial scales [J].
Zuo, Hong ;
Yang, Zhiqiang ;
Deng, Shouchun ;
Li, Haibo .
PHYSICS OF FLUIDS, 2023, 35 (01)
[22]   Second-order asymptotic algorithm for heat conduction problems of periodic composite materials in curvilinear coordinates [J].
Ma, Qiang ;
Cui, Junzhi ;
Li, Zhihui ;
Wang, Ziqiang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 306 :87-115
[23]   Second-Order Asymptotic Analysis and Computations of Axially and Spherically Symmetric Piezoelectric Problems for Composite Structures [J].
Ma, Qiang ;
Wang, Hao ;
Yang, Zhiqiang ;
Li, Zhihui ;
Cui, Junzhi .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) :689-731
[24]   Higher-order diffusion MRI characterization of mesorectal lymph nodes in rectal cancer [J].
Ianus, Andrada ;
Santiago, Ines ;
Galzerano, Antonio ;
Montesinos, Paula ;
Loucao, Nuno ;
Sanchez-Gonzalez, Javier ;
Alexander, Daniel C. ;
Matos, Celso ;
Shemesh, Noam .
MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (01) :348-364
[25]   Second order homogenization of the elastic wave equation for non-periodic layered media [J].
Capdeville, Y. ;
Marigo, J.-J. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 170 (02) :823-838
[26]   Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems [J].
Coelho, Santiago ;
Baete, Steven H. ;
Lemberskiy, Gregory ;
Ades-Aron, Benjamin ;
Barrol, Genevieve ;
Veraart, Jelle ;
Novikov, Dmitry S. ;
Fieremans, Els .
NEUROIMAGE, 2022, 257
[27]   A second-order strain gradient fracture model for the brittle materials with micro-cracks by a multiscale asymptotic homogenization [J].
Yang, Zhiqiang ;
Rao, Yipeng ;
Sun, Yi ;
Cui, Junzhi ;
Xiang, Meizhen .
COMPUTATIONAL MECHANICS, 2023, 71 (06) :1093-1118
[28]   Second-order two-scale asymptotic analysis for axisymmetric and spherical symmetric structure with periodic configurations [J].
Ma, Qiang ;
Cui, Junzhi ;
Li, Zhihui .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 78-79 :77-100
[29]   A high order homogenization model for transient dynamics of heterogeneous media including micro-inertia effects [J].
Hui, Tong ;
Oskay, Caglar .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 273 :181-203
[30]   Degenerate equations in a diffusion-precipitation model for clogging porous media [J].
Schulz, Raphael .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2020, 31 (06) :1050-1069