A second order asymptotic model for diffusion MRI in permeable media

被引:0
|
作者
Kchaou, Marwa [1 ,2 ]
Li, Jing-Rebecca [3 ]
机构
[1] ESPRIT, Sch Engn, 1, 2 rue Andre Ampere,Pole Technol,El Ghazala, Tunis 2083, Tunisia
[2] Univ Tunis El Manar, ENIT LAMSIN, BP 37,Belvederem, Tunis 1002, Tunisia
[3] Inst Polytech Paris, IDEFIX Team, Inria Saclay, UMA,ENSTA Paris, Palaiseau, France
关键词
Bloch-Torrey equation; diffusion MRI; Homogenization; higher-order diffusion tensor; GAUSSIAN WATER DIFFUSION; MAGNETIC-RESONANCE; WAVE-PROPAGATION; HOMOGENIZATION; QUANTIFICATION; NMR;
D O I
10.1051/m2an/2023043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from a reference partial differential equation model of the complex transverse water proton magnetization in a voxel due to diffusion-encoding magnetic field gradient pulses, one can use periodic homogenization theory to establish macroscopic models. A previous work introduced an asymptotic model that accounted for permeable interfaces in the imaging medium. In this paper we formulate a higher order asymptotic model to treat higher values of permeability. We explicitly solved this new asymptotic model to obtain a system of ordinary differential equations that can model the diffusion MRI signal and we present numerical results showing the improved accuracy of the new model in the regime of higher permeability.
引用
收藏
页码:1953 / 1980
页数:28
相关论文
共 50 条
  • [1] Numerical study of a macroscopic finite pulse model of the diffusion MRI signal
    Li, Jing-Rebecca
    Hang Tuan Nguyen
    Dang Van Nguyen
    Haddar, Houssem
    Coatleven, Julien
    Le Bihan, Denis
    JOURNAL OF MAGNETIC RESONANCE, 2014, 248 : 54 - 65
  • [2] A MACROSCOPIC MODEL FOR THE DIFFUSION MRI SIGNAL ACCOUNTING FOR TIME-DEPENDENT DIFFUSIVITY
    Haddar, Houssem
    Li, Jing-Rebecca
    Schiavi, Simona
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (03) : 930 - 949
  • [3] Asymptotic analysis of second-order boundary layer correctors
    Onofrei, Daniel
    Vernescu, Bogdan
    APPLICABLE ANALYSIS, 2012, 91 (06) : 1097 - 1110
  • [4] MICROSTRUCTURAL TOPOLOGICAL SENSITIVITIES OF THE SECOND-ORDER MACROSCOPIC MODEL FOR WAVES IN PERIODIC MEDIA
    Bonnet, Marc
    Cornaggia, Remi
    Guzina, Bojan B.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (04) : 2057 - 2082
  • [5] A MACROSCOPIC MODEL INCLUDING MEMBRANE EXCHANGE FOR DIFFUSION MRI
    Coatleven, Julien
    Haddar, Houssem
    Li, Jing-Rebecca
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (02) : 516 - 546
  • [6] Practical computation of the diffusion MRI signal based on Laplace eigenfunctions: permeable interfaces
    Agdestein, Syver Doving
    Try Nguyen Tran
    Li, Jing-Rebecca
    NMR IN BIOMEDICINE, 2022, 35 (03)
  • [7] An Asymptotic Model of Seismic Reflection from a Permeable Layer
    Silin, Dmitriy
    Goloshubin, Gennady
    TRANSPORT IN POROUS MEDIA, 2010, 83 (01) : 233 - 256
  • [8] Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding
    Coelho, Santiago
    Pozo, Jose M.
    Jespersen, Sune N.
    Jones, Derek K.
    Frangi, Alejandro F.
    MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (01) : 395 - 410
  • [9] A high order model for piezoelectric rods: An asymptotic approach
    Viano, J. M.
    Ribeiro, C.
    Figueiredo, J.
    Rodriguez-Aros, A.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 81 : 294 - 310
  • [10] Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients
    Allegretto, Walter
    Cao, Liqun
    Lin, Yanping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 20 (03) : 543 - 576