MOKPE: drug-target interaction prediction via manifold optimization based kernel preserving embedding

被引:4
作者
Binatli, Oguz C. [1 ]
Gonen, Mehmet [2 ,3 ]
机构
[1] Koc Univ, Grad Sch Sci & Engn, TR-34450 Istanbul, Turkiye
[2] Koc Univ, Coll Engn, Dept Ind Engn, TR-34450 Istanbul, Turkiye
[3] Koc Univ, Sch Med, TR-34450 Istanbul, Turkiye
关键词
Drug-target interaction prediction; Drug repurposing; Manifold optimization; Kernel methods; Machine learning;
D O I
10.1186/s12859-023-05401-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: In many applications of bioinformatics, data stem from distinct heterogeneous sources. One of the well-known examples is the identification of drugtarget interactions (DTIs), which is of significant importance in drug discovery. In this paper, we propose a novel framework, manifold optimization based kernel preserving embedding (MOKPE), to efficiently solve the problem of modeling heterogeneous data. Our model projects heterogeneous drug and target data into a unified embedding space by preserving drug-target interactions and drug-drug, target-target similarities simultaneously. Results: We performed ten replications of ten-fold cross validation on four different drug-target interaction network data sets for predicting DTIs for previously unseen drugs. The classification evaluation metrics showed better or comparable performance compared to previous similarity-based state-of-the-art methods. We also evaluated MOKPE on predicting unknown DTIs of a given network. Our implementation of the proposed algorithm in R together with the scripts that replicate the reported experiments is publicly available at https://github.com/ocbinatli/mokpe.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] The Computational Models of Drug-Target Interaction Prediction
    Ding, Yijie
    Tang, Jijun
    Guo, Fei
    PROTEIN AND PEPTIDE LETTERS, 2020, 27 (05) : 348 - 358
  • [22] Current status and future prospects of drug-target interaction prediction
    Ru, Xiaoqing
    Ye, Xiucai
    Sakurai, Tetsuya
    Zou, Quan
    Xu, Lei
    Lin, Chen
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2021, 20 (05) : 312 - 322
  • [23] Reinforced Metapath Optimization in Heterogeneous Information Networks for Drug-Target Interaction Prediction
    Xu, Ben
    Chen, Jianping
    Wang, Yunzhe
    Fu, Qiming
    Lu, You
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (06) : 2315 - 2329
  • [24] Predicting Drug-target Interaction via Wide and Deep Learning
    Du, Yingyi
    Wang, Jihong
    Wang, Xiaodan
    Chen, Jiyun
    Chang, Huiyou
    PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018), 2018, : 128 - 132
  • [25] DTiGEMS plus : drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques
    Thafar, Maha A.
    Olayan, Rawan S.
    Ashoor, Haitham
    Albaradei, Somayah
    Bajic, Vladimir B.
    Gao, Xin
    Gojobori, Takashi
    Essack, Magbubah
    JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
  • [26] Application of Machine Learning for Drug-Target Interaction Prediction
    Xu, Lei
    Ru, Xiaoqing
    Song, Rong
    FRONTIERS IN GENETICS, 2021, 12
  • [27] ALADIN: A New Approach for Drug-Target Interaction Prediction
    Buza, Krisztian
    Peska, Ladislav
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 322 - 337
  • [28] Drug-target interaction prediction using artificial intelligence
    Yaseen, Baraa Taha
    Kurnaz, Sefer
    APPLIED NANOSCIENCE, 2021, 13 (5) : 3335 - 3345
  • [29] Drug-target interaction prediction: A Bayesian ranking approach
    Peska, Ladislav
    Buza, Krisztian
    Koller, Julia
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 152 : 15 - 21
  • [30] Drug-target interaction prediction via class imbalance-aware ensemble learning
    Ezzat, Ali
    Wu, Min
    Li, Xiao-Li
    Kwoh, Chee-Keong
    BMC BIOINFORMATICS, 2016, 17