MOKPE: drug-target interaction prediction via manifold optimization based kernel preserving embedding

被引:4
|
作者
Binatli, Oguz C. [1 ]
Gonen, Mehmet [2 ,3 ]
机构
[1] Koc Univ, Grad Sch Sci & Engn, TR-34450 Istanbul, Turkiye
[2] Koc Univ, Coll Engn, Dept Ind Engn, TR-34450 Istanbul, Turkiye
[3] Koc Univ, Sch Med, TR-34450 Istanbul, Turkiye
关键词
Drug-target interaction prediction; Drug repurposing; Manifold optimization; Kernel methods; Machine learning;
D O I
10.1186/s12859-023-05401-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: In many applications of bioinformatics, data stem from distinct heterogeneous sources. One of the well-known examples is the identification of drugtarget interactions (DTIs), which is of significant importance in drug discovery. In this paper, we propose a novel framework, manifold optimization based kernel preserving embedding (MOKPE), to efficiently solve the problem of modeling heterogeneous data. Our model projects heterogeneous drug and target data into a unified embedding space by preserving drug-target interactions and drug-drug, target-target similarities simultaneously. Results: We performed ten replications of ten-fold cross validation on four different drug-target interaction network data sets for predicting DTIs for previously unseen drugs. The classification evaluation metrics showed better or comparable performance compared to previous similarity-based state-of-the-art methods. We also evaluated MOKPE on predicting unknown DTIs of a given network. Our implementation of the proposed algorithm in R together with the scripts that replicate the reported experiments is publicly available at https://github.com/ocbinatli/mokpe.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] MOKPE: drug–target interaction prediction via manifold optimization based kernel preserving embedding
    Oğuz C. Binatlı
    Mehmet Gönen
    BMC Bioinformatics, 24
  • [2] Computational Drug-target Interaction Prediction based on Graph Embedding and Graph Mining
    Thafar, Maha A.
    Albaradie, Somayah
    Olayan, Rawan S.
    Ashoor, Haitham
    Essack, Magbubah
    Bajic, Vladimir B.
    PROCEEDINGS OF 2020 10TH INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS (ICBBB 2020), 2020, : 14 - 21
  • [3] HNEDTI: Prediction of drug-target interaction based on heterogeneous network embedding
    Lu, Zhangli
    Wang, Yake
    Zeng, Min
    Li, Min
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 211 - 214
  • [4] Novel drug-target interactions via link prediction and network embedding
    E. Amiri Souri
    R. Laddach
    S. N. Karagiannis
    L. G. Papageorgiou
    S. Tsoka
    BMC Bioinformatics, 23
  • [5] Novel drug-target interactions via link prediction and network embedding
    Souri, E. Amiri
    Laddach, R.
    Karagiannis, S. N.
    Papageorgiou, L. G.
    Tsoka, S.
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [6] A comparison of embedding aggregation strategies in drug-target interaction prediction
    Iliadis, Dimitrios
    De Baets, Bernard
    Pahikkala, Tapio
    Waegeman, Willem
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [7] A multiple kernel learning algorithm for drug-target interaction prediction
    Nascimento, Andre C. A.
    Prudencio, Ricardo B. C.
    Costa, Ivan G.
    BMC BIOINFORMATICS, 2016, 17
  • [8] A multiple kernel learning algorithm for drug-target interaction prediction
    André C. A. Nascimento
    Ricardo B. C. Prudêncio
    Ivan G. Costa
    BMC Bioinformatics, 17
  • [9] Drug-Target Interaction Prediction Based on Heterogeneous Networks
    Wang, Yingjie
    Chang, Huiyou
    Wang, Jihong
    Shi, Yue
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 14 - 18
  • [10] Network-Based Drug-Target Interaction Prediction with Probabilistic Soft Logic
    Fakhraei, Shobeir
    Huang, Bert
    Raschid, Louiqa
    Getoor, Lise
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (05) : 775 - 787