Error-Based Active Disturbance Rejection Control for Wind Turbine Output Power Regulation

被引:0
作者
Huang, Congzhi [1 ,2 ]
Zhao, Heting [1 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Key Lab Power Stn Energy Transfer Convers & Syst, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Active disturbance rejection control (ADRC); aquila optimizer; extended state observer (ESO); OpenFAST; pitch angle control; wind turbine; TRANSIENT STABILITY ANALYSIS; PITCH CONTROL; SYSTEM; OPTIMIZATION; GENERATORS; DESIGN; SPEED;
D O I
10.1109/TSTE.2023.3243386
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The intermittence and randomness of wind speed often lead to the fluctuation of wind turbine output power especially when operating in high wind speed areas. In this paper, a holistic framework of error-based ADRC for wind turbine is proposed to achieve the output power regulation, by designing an extended state observer and parameter optimization to estimate and compensate the total disturbances. A stability theorem of closed-loop system with error-based ADRC is proposed by the Lyapunov function, and the feasible region of the controller parameters is deduced accordingly. To achieve the best performance of error-based ADRC, the optimal solution of the controller parameters is determined by the proposed Aquila Optimizer fused Golden Sine Algorithm. Finally, the superiority of proposed control strategy is verified by simulation tests on a 5MW OpenFAST wind turbine. Compared with the traditional control methods adopted in the industry, the error-based ADRC has excellent regulation rapidity and power stability for constant power control of wind turbine.
引用
收藏
页码:1692 / 1701
页数:10
相关论文
共 45 条
[21]   A comprehensive comparison of large scale global optimizers [J].
LaTorre, Antonio ;
Muelas, Santiago ;
Pena, Jose-Maria .
INFORMATION SCIENCES, 2015, 316 :517-549
[22]   Generalized Extended State Observer-Based Distributed Attack-Resilient Control for DC Microgrids [J].
Lu, Jinghang ;
Zhang, Xingyu ;
Hou, Xiaochao ;
Wang, Peng .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2022, 13 (03) :1469-1480
[23]   On vibration suppression and trajectory tracking in largely uncertain torsional system: An error-based ADRC approach [J].
Madonski, R. ;
Ramirez-Neria, M. ;
Stankovic, M. ;
Shao, S. ;
Gao, Z. ;
Yang, J. ;
Li, S. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 134
[24]   General error-based active disturbance rejection control for swift industrial implementations [J].
Madonski, R. ;
Shao, S. ;
Zhang, H. ;
Gao, Z. ;
Yang, J. ;
Li, S. .
CONTROL ENGINEERING PRACTICE, 2019, 84 :218-229
[25]  
Madonski R, 2020, IEEE DECIS CONTR P, P2744, DOI [10.1109/CDC42340.2020.9304198, 10.1109/cdc42340.2020.9304198]
[26]   Fault-tolerant optimal pitch control of wind turbines using dynamic weighted parallel firefly algorithm [J].
Mousavi, Yashar ;
Bevan, Geraint ;
Kucukdemiral, Ibrahim Beklan .
ISA TRANSACTIONS, 2022, 128 :301-317
[27]   Comparative study on transient stability analysis of wind turbine generator system using different drive train models [J].
Muyeen, S. M. ;
Ali, Md. Hasan ;
Takahashi, R. ;
Murata, T. ;
Tamura, J. ;
Tomaki, Y. ;
Sakahara, A. ;
Sasano, E. .
IET RENEWABLE POWER GENERATION, 2007, 1 (02) :131-141
[28]   Parametrically Robust Identification Based Sensorless Control Approach for Doubly Fed Induction Generator [J].
Nair, Anuprabha Ravindran ;
Bhattarai, Rojan ;
Smith, Michael ;
Kamalasadan, Sukumar .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (01) :1024-1034
[29]   Nonlinear Dynamic Systems Parameterization Using Interval-Based Global Optimization: Computing Lipschitz Constants and Beyond [J].
Nugroho, Sebastian Adi ;
Taha, Ahmad F. ;
Hoang, Vu .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) :3836-3850
[30]   Synergistic Frequency Regulation Control Mechanism for DFIG Wind Turbines With Optimal Pitch Dynamics [J].
Prasad, Rashmi ;
Padhy, Narayana Prasad .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (04) :3181-3191