Torsion in the space of commuting elements in a Lie group

被引:1
|
作者
Kishimoto, Daisuke [1 ]
Takeda, Masahiro [2 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[2] Kyoto Univ, Inst Liberal Arts & Sci, Kyoto 6068316, Japan
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2024年 / 76卷 / 03期
关键词
Space of commuting elements; Lie group; Weyl group; homotopy colimit; Bousfield-Kan spectral sequence; extended Dynkin diagram; N-TUPLES; REPRESENTATIONS; COHOMOLOGY; EQUATIONS;
D O I
10.4153/S0008414X23000317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact connected Lie group, and let Hom(Z(m), G) be the space of pairwise commuting m-tuples in G. We study the problem of which primes p Hom(Z(m), G)1, the connected component of Hom(Z(m), G) containing the element (1, . . . ,1), has p-torsion in homology. We will prove that Hom(Z(m), G)(1) for m = 2 has p-torsion in homology if and only if p divides the order of the Weyl group of G for G = SU(n) and some exceptional groups. We will also compute the top homology of Hom(Z(m), G)(1) and show that Hom(Z(m), G)(1) always has 2-torsion in homology whenever G is simply-connected and simple. Our computation is based on a new homotopy decomposition of Hom(Z(m), G)(1), which is of independent interest and enables us to connect torsion in homology to the combinatorics of the Weyl group.
引用
收藏
页码:1033 / 1061
页数:29
相关论文
共 50 条
  • [41] Topological and Homological Properties of the Orbit Space of a Simple Three-Dimensional Compact Linear Lie Group
    Styrt, O. G.
    MATHEMATICAL NOTES, 2023, 113 (3-4) : 434 - 440
  • [42] Geometrical Categories of Generalized Lie Groups and Lie Group-Groupoids
    Farhangdoost, M. R.
    Nasirzade, T.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2013, 37 (A1): : 69 - 73
  • [43] Prederivations of Lie Algebras and Isometries of Bi-invariant Lie Group
    Ignacio Bajo
    Geometriae Dedicata, 1997, 66 : 281 - 291
  • [44] Line bundles on the moduli space of Lie algebroid connections over a curve
    Biswas, Indranil
    Singh, Anoop
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [45] Lie group valued Koopman eigenfunctions
    Das, Suddhasattwa
    NONLINEARITY, 2023, 36 (05) : 2149 - 2165
  • [46] On Differentiability of Vectors in Lie Group Representations
    Beltita, Ingrid
    Beltita, Daniel
    JOURNAL OF LIE THEORY, 2011, 21 (04) : 771 - 785
  • [47] THE EXTENSION PROBLEM FOR LIE GROUP HOMOMORPHISMS
    FISHER, RJ
    LAQUER, HT
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (02) : 169 - 190
  • [48] Lie group integrators for mechanical systems
    Celledoni, Elena
    Cokaj, Ergys
    Leone, Andrea
    Murari, Davide
    Owren, Brynjulf
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (01) : 58 - 88
  • [49] Lie group impression for deep learning
    Yang, Mengduo
    Li, Fanzhang
    Zhang, Li
    Zhang, Zhao
    INFORMATION PROCESSING LETTERS, 2018, 136 : 12 - 16
  • [50] Survey on lie group machine learning
    Li F.-Z.
    He S.-P.
    Qian X.-P.
    Jisuanji Xuebao/Chinese Journal of Computers, 2010, 33 (07): : 1115 - 1126