Torsion in the space of commuting elements in a Lie group

被引:1
|
作者
Kishimoto, Daisuke [1 ]
Takeda, Masahiro [2 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[2] Kyoto Univ, Inst Liberal Arts & Sci, Kyoto 6068316, Japan
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2024年 / 76卷 / 03期
关键词
Space of commuting elements; Lie group; Weyl group; homotopy colimit; Bousfield-Kan spectral sequence; extended Dynkin diagram; N-TUPLES; REPRESENTATIONS; COHOMOLOGY; EQUATIONS;
D O I
10.4153/S0008414X23000317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact connected Lie group, and let Hom(Z(m), G) be the space of pairwise commuting m-tuples in G. We study the problem of which primes p Hom(Z(m), G)1, the connected component of Hom(Z(m), G) containing the element (1, . . . ,1), has p-torsion in homology. We will prove that Hom(Z(m), G)(1) for m = 2 has p-torsion in homology if and only if p divides the order of the Weyl group of G for G = SU(n) and some exceptional groups. We will also compute the top homology of Hom(Z(m), G)(1) and show that Hom(Z(m), G)(1) always has 2-torsion in homology whenever G is simply-connected and simple. Our computation is based on a new homotopy decomposition of Hom(Z(m), G)(1), which is of independent interest and enables us to connect torsion in homology to the combinatorics of the Weyl group.
引用
收藏
页码:1033 / 1061
页数:29
相关论文
共 50 条
  • [21] On the number of simplices required to triangulate a Lie group
    Duan, Haibao
    Marzantowicz, Waclaw
    Zhao, Xuezhi
    TOPOLOGY AND ITS APPLICATIONS, 2021, 293
  • [22] Semisimple elements and the little Weyl group of real semisimple Zm-graded Lie algebras
    de Graaf, Willem
    Le, Hong Van
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 703 : 423 - 445
  • [23] Remote sensing scene classification based on contextual attention mechanism of lie group space
    Xu, Chengjun
    Shu, Jingqian
    Wang, Jialin
    Wang, Zhenghan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (22) : 8405 - 8424
  • [24] On the mod 2 cohomology of the classifying space of the exceptional Lie group E6
    Kameko, Masaki
    Nakagawa, Masaki
    Nishimoto, Tetsu
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2019, 95 (09) : 91 - 96
  • [25] Lie algebras and higher torsion in p-groups
    Pakianathan, Jonathan
    Rogers, Nicholas F.
    JOURNAL OF ALGEBRA, 2013, 385 : 192 - 240
  • [26] Constructing a Lie group analog for the Monster Lie algebra
    Carbone, Lisa
    Jurisich, Elizabeth
    Murray, Scott H.
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (03)
  • [27] Constructing a Lie group analog for the Monster Lie algebra
    Lisa Carbone
    Elizabeth Jurisich
    Scott H. Murray
    Letters in Mathematical Physics, 2022, 112
  • [28] On conjugacy classes in the Lie group E8
    Lusztig, George
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (01): : 91 - 94
  • [29] Compact Elements in Connected Lie Groups
    Kabenyuk, Mikhail
    JOURNAL OF LIE THEORY, 2017, 27 (02) : 569 - 578
  • [30] Cyclic elements in semisimple lie algebras
    Elashvili, A. G.
    Kac, V. G.
    Vinberg, E. B.
    TRANSFORMATION GROUPS, 2013, 18 (01) : 97 - 130