Quantum geometry of expectation values

被引:1
作者
Song, Chaoming [1 ]
机构
[1] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA
关键词
ELECTRON-DENSITIES; PERIODIC-ORBITS; FUNCTIONALS; MATRICES;
D O I
10.1103/PhysRevA.107.062207
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a framework for the quantum geometry of expectation values over arbitrary sets of operators and establish a link between this geometry and the eigenstates of Hamiltonian families generated by these operators. We show that the boundary of expectation value space corresponds to the ground state, which presents a natural bound that generalizes Heisenberg's uncertainty principle. To demonstrate the versatility of our framework, we present several practical applications, including providing a stronger nonlinear quantum bound that violates the Bell inequality and an explicit construction of the density functional. Our approach provides an alternative time-independent quantum formulation that transforms the linear problem in a high-dimensional Hilbert space into a nonlinear algebro-geometric problem in a low dimension, enabling us to gain new insights into quantum systems.
引用
收藏
页数:14
相关论文
共 54 条
  • [1] ASHTEKAR A, 1995, AIP CONF PROC, V342, P471, DOI 10.1063/1.48786
  • [2] PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL
    BAXTER, RJ
    [J]. ANNALS OF PHYSICS, 1972, 70 (01) : 193 - &
  • [3] CONSERVATION LAWS AND CORRELATION FUNCTIONS
    BAYM, G
    KADANOFF, LP
    [J]. PHYSICAL REVIEW, 1961, 124 (02): : 287 - +
  • [4] Perspective: Fifty years of density-functional theory in chemical physics
    Becke, Axel D.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (18)
  • [5] Bell JS., 1964, PHYSICS, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, 10.1103/Physics-PhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
  • [6] Metal theory
    Bethe, H.
    [J]. ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4): : 205 - 226
  • [7] Computation of the dual of a plane projective curve
    Bouziane, D
    El Kahoui, M
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2002, 34 (02) : 105 - 117
  • [8] Bell nonlocality
    Brunner, Nicolas
    Cavalcanti, Daniel
    Pironio, Stefano
    Scarani, Valerio
    Wehner, Stephanie
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (02) : 419 - 478
  • [9] QUANTUM GENERALIZATIONS OF BELLS-INEQUALITY
    CIRELSON, BS
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1980, 4 (02) : 93 - 106
  • [10] Coleman A. J., 2000, LECT N CHEM, V72