On weighted boundedness and compactness of commutators of Marcinkiewicz integral associated with Schrodinger operators

被引:3
作者
Zhang, Juan [1 ]
He, Qianjun [2 ]
Xue, Qingying [3 ]
机构
[1] Beijing Forestry Univ, Sch Sci, Beijing 100083, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Commutators; Weighted compactness; Schrodinger operator; Marcinkiewicz integral; Maximal operator; L-P-BOUNDEDNESS; NORM INEQUALITIES; ORDER COMMUTATORS; HOMOGENEOUS TYPE; SPACES;
D O I
10.1007/s43034-023-00281-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying the weighted boundedness and compactness of commutators of Marcinkiewicz integral related to Schrodinger operators. We show that the commutators of Marcinkiewicz integral related to Schrodinger operators with pointwise multiplication with functions in BMO(s) space are weighted L-p(p > 1) bounded and with functions in CMO(s) space are compact operators when acting on weighted Lebesgue spaces. As a byproduct, the weighted compactness of commutators of maximal operator associated with Schrodinger operators is given. Here BMO(s) is a function space which is larger than the classical BMO space and CMO(s) denotes the closure of C-c(8)(R-d) in the BMO(s)topology.
引用
收藏
页数:31
相关论文
共 58 条
[31]   Extrapolation of compactness on weighted spaces: Bilinear operators [J].
Hytonen, Tuomas ;
Lappas, Stefanos .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (02) :397-420
[32]  
Krantz SG, 2001, J MATH ANAL APPL, V258, P629, DOI 10.1006/jmaa.2000.7402
[33]   Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II [J].
Krantz, SG ;
Li, SY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (02) :642-657
[34]  
Li PT, 2012, PURE APPL MATH Q, V8, P713
[35]  
Li PT., 2014, MATH NACHR, V288, P1
[36]   COMPACTNESS FOR HIGHER ORDER COMMUTATORS OF OSCILLATORY SINGULAR INTEGRAL OPERATORS [J].
Liu, Heping ;
Tang, Lin .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (09) :1137-1146
[37]   WEIGHTED NORM INEQUALITIES FOR HARDY MAXIMAL FUNCTION [J].
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 165 (MAR) :207-+
[38]  
PENG LZ, 1988, ARK MAT, V26, P315
[39]  
Rao M. M., 1991, THEORY ORLICZ SPACES
[40]   L(P) ESTIMATES FOR SCHRODINGER-OPERATORS WITH CERTAIN POTENTIALS [J].
SHEN, ZW .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (02) :513-546