Near zero fuzzy solution of fully fuzzy linear systems

被引:0
作者
Guo, Xiaobin [1 ]
Liu, Kun [2 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou, Peoples R China
[2] Longdong Univ, Sch Math & Stat, Qingyang, Peoples R China
关键词
Fuzzy numbers; matrix computation; fuzzy linear systems; fuzzy approximate solutions; EMBEDDING PROBLEM; NUMBERS;
D O I
10.3233/JIFS-222421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discusses a new approximate solution of a class of fully fuzzy linear systems (A) over tilde(x) over tilde = (b) over tilde in which the coefficient matrix (A) over tilde is a positive fuzzy matrix. The original fuzzy linear systems is extended into simple crisp linear equation using the obtained approximate multiplication of positive fuzzy number and near zero fuzzy number. Two cases are analysed: (a) the unknown vector (x) over tilde is a near zero fuzzy vector with positive mean value; (b) the unknown vector (x) over tilde is a near zero fuzzy vector with negative mean value. Two computing models are established and respective expression of the solution to fully fuzzy linear system are derived, and the sufficient condition for the existence of strong fuzzy solution are analyzed correspondingly. Some numerical examples are given to illustrated our proposed method.
引用
收藏
页码:8043 / 8052
页数:10
相关论文
共 34 条
  • [1] Minimal solution of general dual fuzzy linear systems
    Abbasbandy, S.
    Otadi, M.
    Mosleh, M.
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 37 (04) : 1113 - 1124
  • [2] On the fuzzy solution of LR fuzzy linear systems
    Allahviranloo, T.
    Lotfi, F. Hosseinzadeh
    Kiasari, M. Khorasani
    Khezerloo, M.
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (03) : 1170 - 1176
  • [3] A new approach to obtain algebraic solution of interval linear systems
    Allahviranloo, T.
    Ghanbari, M.
    [J]. SOFT COMPUTING, 2012, 16 (01) : 121 - 133
  • [4] Allahviranloo T, 2008, APPL APPL MATH, V3, P77
  • [5] Allahviranloo T, 2011, APPL COMPUT MATH-BAK, V10, P271
  • [6] Fuzzy general linear systems
    Asady, B
    Abbasbandy, S
    Alavi, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (01) : 34 - 40
  • [7] Babbar N, 2013, SOFT COMPUT, V17, P691, DOI 10.1007/s00500-012-0941-2
  • [8] Calculating fuzzy inverse matrix using fuzzy linear equation system
    Basaran, Murat Alper
    [J]. APPLIED SOFT COMPUTING, 2012, 12 (06) : 1810 - 1813
  • [9] Chen Y., 2021, 17 INT C COMPUTATION, P23
  • [10] Daud W.S.W., 2021, TELKOMNIKA TELECOMMU, V19, P583