Polymers of intrinsic microporosity containing aryl-phthalimide moieties: synthesis, modeling, and membrane gas transport properties

被引:2
作者
Rodriguez-Gonzalez, Fidel E. [1 ]
Soto, Cenit [2 ]
Palacio, Laura [2 ]
Montero-Alejo, Ana L. [3 ]
Escalona, Nestor [4 ,5 ]
Schott, Eduardo [6 ]
Comesana-Gandara, Bibiana [7 ]
Terraza, Claudio A. [1 ,8 ]
Tundidor-Camba, Alain [1 ,8 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Organ Chem, Res Lab Organ Polymers RLOP, POB 306,Post 22, Santiago, Chile
[2] Univ Valladolid, Inst Sustainable Proc, Dr Mergelina S-Nn, Valladolid 47011, Spain
[3] Univ Tecnol Metropolitana, Fac Ciencias Nat Matemat & Medio Ambiente FCNMM, Dept Fis, Jose Pedro Alessandri 1242, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Dept Ingn Quim & Bioproc, Escuela Ingn, Ave Vicuna Mackenna 4860, Santiago, Chile
[5] Millennium Nuclei Catalyt Proc Sustainable Chem C, ANID, Millennium Sci Initiat Program, Santiago, Chile
[6] Pontificia Univ Catolica Chile, Fac Quim & Farm, Ctr Invest Nanotecnol & Mat Avanzados CIEN UC, Dept Quim Inorgan, Santiago, Chile
[7] Univ Valladolid, IU CINQUIMA, Paseo Belen 5, Valladolid 47011, Spain
[8] Pontificia Univ Catolica Chile, UC Energy Res Ctr, Santiago, Chile
关键词
UNITED-ATOM DESCRIPTION; POROUS AROMATIC FRAMEWORKS; FREE-VOLUME DISTRIBUTION; TRANSFERABLE POTENTIALS; PHASE-EQUILIBRIA; PERMEATION PROPERTIES; ORGANIC MATERIALS; SEPARATION; PIMS; CATALYSIS;
D O I
10.1039/d2py01584f
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
High-performance polymers for membrane gas separation require the careful design of the structure-porous relationship. In this work, five phthalimide-based polymers of intrinsic microporosity (PIMs) were obtained via the double nucleophilic aromatic substitution with the commercially available 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethylspirobisindane (TTSBI) monomer. The phthalimide monomers were synthesized considering different sizes and positions of the alkyl-substituents to evaluate their influence on the physical properties of the polymers and their potential use as gas separation membranes. Four polymers were soluble in the low-boiling solvents chloroform and tetrahydrofuran, facilitating the casting of self-standing films to evaluate their gas separation properties. The thermally stable membranes showed 5% weight lost between 537 ? and 549 ?. As powders, these four polymers showed apparent BET surface areas ranging from 434 to 661 m(2) g(-1). The experimental BET surface areas correlated with those obtained by molecular simulation models of the synthesized polymers. A linear function is proposed as a tool to predict, with a known uncertainty, the surface area values of this type of polymer from the corresponding computational models. As a trend, increasing the volume of the ortho-substituent in the aryl-phthalimide group increases the permeability of the membranes, reaching generally better performances than Matrimid (R) and close to those of PIM-1, considering their place on the Robeson diagrams of the O-2/N-2, CO2/CH4 and CO2/N-2 gas pairs. Aging studies between 63 and 122 days showed a decrease in permeability, accompanied by the typical increase in selectivity that tends to move the data parallel to the upper Robeson limits.
引用
收藏
页码:2363 / 2373
页数:11
相关论文
共 67 条
[1]   Polymatic: a generalized simulated polymerization algorithm for amorphous polymers [J].
Abbott, Lauren J. ;
Hart, Kyle E. ;
Colina, Coray M. .
THEORETICAL CHEMISTRY ACCOUNTS, 2013, 132 (03) :1-19
[2]   Spirobifluorene-based polymers of intrinsic microporosity for the adsorption of methylene blue from wastewater: effect of surfactants [J].
Al-Hetlani, Entesar ;
Amin, Mohamed O. ;
Bezzu, C. Grazia ;
Carta, Mariolino .
ROYAL SOCIETY OPEN SCIENCE, 2020, 7 (09)
[3]   A New Porous Polymer for Highly Efficient Capacitive Energy Storage [J].
Bhanja, Piyali ;
Das, Sabuj K. ;
Bhunia, Kousik ;
Pradhan, Debabrata ;
Hayashi, Taku ;
Hijikata, Yuh ;
Irle, Stephan ;
Bhaumik, Asim .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (01) :202-209
[4]   Nanoporous Conducting Covalent Organic Polymer (COP) Nanostructures as Metal-Free High Performance Visible-Light Photocatalyst for Water Treatment and Enhanced CO2 Capture [J].
Bhowmik, Soumitra ;
Jadhav, Rohit G. ;
Das, Apurba K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (01) :274-284
[5]  
Biovia S. D. D. S., 2022, DASSAULT SYSTEMES MA
[6]   Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials [J].
Budd, PM ;
Ghanem, BS ;
Makhseed, S ;
McKeown, NB ;
Msayib, KJ ;
Tattershall, CE .
CHEMICAL COMMUNICATIONS, 2004, (02) :230-231
[7]   An Efficient Polymer Molecular Sieve for Membrane Gas Separations [J].
Carta, Mariolino ;
Malpass-Evans, Richard ;
Croad, Matthew ;
Rogan, Yulia ;
Jansen, Johannes C. ;
Bernardo, Paola ;
Bazzarelli, Fabio ;
McKeown, Neil B. .
SCIENCE, 2013, 339 (6117) :303-307
[8]   Soluble Conjugated Microporous Polymers [J].
Cheng, Ge ;
Hasell, Tom ;
Trewin, Abbie ;
Adams, Dave J. ;
Cooper, Andrew I. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (51) :12727-12731
[9]   Pentiptycene-based ladder polymers with configurational free volume for enhanced gas separation performance and physical aging resistance [J].
Corrado, Tanner J. ;
Huang, Zihan ;
Huang, Dezhao ;
Wamble, Noah ;
Luo, Tengfei ;
Guo, Ruilan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (37)
[10]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170