Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance

被引:49
|
作者
Zhang, Chenyan [1 ]
Wang, Jikui [1 ]
Li, Shuo [1 ]
Zou, Xinquan [1 ]
Yin, Huixian [1 ]
Huang, Yicheng [1 ]
Dong, Feilong [1 ]
Li, Peiyuan [1 ]
Song, Yaoting [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China
关键词
Sensor; Anti-freezing; Conductive hydrogel; STRAIN; POLYMER; NETWORKS;
D O I
10.1016/j.eurpolymj.2023.111827
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
As an ideal material for flexible sensors, electrically conductive hydrogels (ECHs) has been faced with water loss and easy freezing, which affects the conductive and tensile properties. Polyacrylamide/sodium alginate/LiCl (PAM/SA/LiCl) hydrogel was constructed to enhance the anti-freezing property without deficiencies of tensile and electrical performance. A semi-interpenetrating network (semi-IPN) was formed by PAM and SA through hydrogen bonding, which performed excellent mechanical property (fracture strain 2100%, fracture stress 110 KPa). LiCl contributed to the high ionic conductivity (up to 21.7 S/m) and sensitivity (Gauge Factor (GF) = 17.45). Double hydrogen bonding of SA and PAM, hydration of LiCl and ion interaction between SA and lithium ion improved the anti-freezing performance and mechanical property of the hydrogel together. The proportion of non-freezing water in system was proved to be significantly increased. The comprehensive properties of the hydrogels were evaluated and PAM/SA/3M LiCl hydrogel kept conductive without obvious loss of stretchability at-30 degrees C. The PAM/SA/LiCl hydrogel integrates remarkable toughness, conductivity, sensitivity and anti-freezing property, which is a suitable choice in smart wearable devices, soft robots and medical monitoring.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Stretchable, transparent, self-adhesive, anti-freezing and ionic conductive nanocomposite hydrogels for flexible strain sensors
    Zhang, Yi
    Liu, Han
    Wang, Ping
    Yu, Yuanyuan
    Zhou, Man
    Xu, Bo
    Cui, Li
    Wang, Qiang
    EUROPEAN POLYMER JOURNAL, 2023, 186
  • [2] Stretchable, self-healing, adhesive and anti-freezing ionic conductive cellulose-based hydrogels for flexible supercapacitors and sensors
    Chen, Lizhi
    Yin, Hongyan
    Liu, Fangfei
    Abdiryim, Tursun
    Xu, Feng
    You, Jiangan
    Chen, Jiaying
    Jing, Xinyu
    Li, Yancai
    Su, Mengyao
    Liu, Xiong
    CELLULOSE, 2024, 31 (18) : 11015 - 11033
  • [3] Ultra-stretchable, anti-freezing conductive hydrogels crosslinked by strong hydrogen bonding for flexible sensors
    Du, Ying
    Sun, Yuanna
    Lu, Shuaishuai
    Zhang, Kaiyuan
    Song, Chen
    Li, Boyang
    He, Xinhai
    Li, Qingshan
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (18) : 2733 - 2740
  • [4] Highly conductive and anti-freezing cellulose hydrogel for flexible sensors
    Shu, Lian
    Wang, Zhongguo
    Zhang, Xiong-Fei
    Yao, Jianfeng
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 230
  • [5] Highly mechanical properties, anti-freezing, and ionic conductive organohydrogel for wearable sensors
    Zou, Yang
    Wang, Pengxiang
    Fan, Zhishui
    Li, Xianxi
    Fang, Shaokang
    Yu, Yue
    Zhang, Hong
    Gong, Yumei
    Liu, Yuanfa
    Guo, Jing
    REACTIVE & FUNCTIONAL POLYMERS, 2022, 175
  • [6] Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics
    Wang, Yafang
    Yao, Anrong
    Chen, Fangchun
    Lan, Jianwu
    Lin, Shaojian
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (12): : 6356 - 6369
  • [7] Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors
    Liu, Ruixue
    Chen, Jichao
    Luo, Zongqing
    Zhang, Xiaojing
    Chen, Weihang
    Niu, Zhibin
    REACTIVE & FUNCTIONAL POLYMERS, 2022, 172
  • [8] Ultra-stretchable and anti-freezing conductive organohydrogel reinforced with ionic clusters for wearable strain sensors
    Guo, Chuanluan
    Zhu, Aoqi
    Wang, Xiaohong
    Dai, Juguo
    Luo, Lili
    Xu, Yiting
    Zeng, Birong
    Chen, Guorong
    Dai, Lizong
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 362
  • [9] Anti-freezing, water-retaining, conductive, and strain-sensitive hemicellulose/polypyrrole composite hydrogels for flexible sensors
    Zhang, Wei
    Wen, Jing-Yun
    Ma, Ming-Guo
    Li, Ming-Fei
    Peng, Feng
    Bian, Jing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 555 - 566
  • [10] Polyethylene Glycol-Based Conductive Hydrogels with Anti-Freezing, Water Retention and Self-Adhesion for Flexible Sensors
    Zhong, Yangengchen
    Liu, Mingjie
    Xiang, Chuyang
    Lin, Yeying
    Guan, Youjun
    Ren, Kunyu
    Ning, Chengyun
    Zhou, Lei
    Lu, Limin
    Fu, Rumin
    Tan, Guoxin
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (19): : 11828 - 11839