Intrinsic and Isotropic Resampling for 3D Point Clouds

被引:15
|
作者
Lv, Chenlei [1 ]
Lin, Weisi [1 ]
Zhao, Baoquan [2 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore City 639798, Singapore
[2] Sun Yat Sen Univ, Sch Artificial Intelligent, Guangzhou 510275, Peoples R China
关键词
Point cloud compression; Three-dimensional displays; Optimization; Level measurement; Surface fitting; Costs; Shape; Isotropic resampling; intrinsic resampling; point cloud simplification; mesh reconstruction; shape registration; SURFACE RECONSTRUCTION; STRUCTURED-LIGHT; COMPUTATION; ALGORITHM; PARALLEL;
D O I
10.1109/TPAMI.2022.3185644
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With rapid development of 3D scanning technology, 3D point cloud based research and applications are becoming more popular. However, major difficulties are still exist which affect the performance of point cloud utilization. Such difficulties include lack of local adjacency information, non-uniform point density, and control of point numbers. In this paper, we propose a two-step intrinsic and isotropic (I&I) resampling framework to address the challenge of these three major difficulties. The efficient intrinsic control provides geodesic measurement for a point cloud to improve local region detection and avoids redundant geodesic calculation. Then the geometrically-optimized resampling uses a geometric update process to optimize a point cloud into an isotropic or adaptively-isotropic one. The point cloud density can be adjusted to global uniform (isotropic) or local uniform with geometric feature keeping (being adaptively isotropic). The point cloud number can be controlled based on application requirement or user-specification. Experiments show that our point cloud resampling framework achieves outstanding performance in different applications: point cloud simplification, mesh reconstruction and shape registration. We provide the implementation codes of our resampling method at https://github.com/vvvwo/II-resampling.
引用
收藏
页码:3274 / 3291
页数:18
相关论文
共 50 条
  • [41] Change Detection in Point Clouds Using 3D Fractal Dimension
    Casas-Rosa, Juan C.
    Navarro, Pablo
    Segura-Sanchez, Rafael J.
    Rueda-Ruiz, Antonio J.
    Lopez-Ruiz, Alfonso
    Fuertes, Jose M.
    Delrieux, Claudio
    Ogayar-Anguita, Carlos J.
    REMOTE SENSING, 2024, 16 (06)
  • [42] Monitoring Critical Infrastructure Using 3D LiDAR Point Clouds
    Sharifisoraki, Z.
    Dey, A.
    Selzler, R.
    Amini, M.
    Green, J. R.
    Rajan, S.
    Kwamena, F. A.
    IEEE ACCESS, 2023, 11 : 314 - 336
  • [43] Registration of Point Clouds in 3D Space Using Soft Alignment
    Makovetskii, A. Yu.
    Kober, V. I.
    Voronin, S. M.
    Voronin, A. V.
    Karnaukhov, V. N.
    Mozerov, M. G.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2024, : 7 - 15
  • [44] Optimization of point clouds for 3D bas-relief modeling
    Blaszczak-Bak, Wioleta
    Suchocki, Czeslaw
    Mrowezynska, Maria
    AUTOMATION IN CONSTRUCTION, 2022, 140
  • [45] Hierarchical Attention Learning of Scene Flow in 3D Point Clouds
    Wang, Guangming
    Wu, Xinrui
    Liu, Zhe
    Wang, Hesheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5168 - 5181
  • [46] METHODOLOGY TO CREATE 3D MODELS FOR AUGMENTED REALITY APPLICATIONS USING SCANNED POINT CLOUDS
    Comes, Radu
    Neamtu, Calin
    Buna, Zsolt
    Badiu, Ionut
    Pupeza, Paul
    MEDITERRANEAN ARCHAEOLOGY & ARCHAEOMETRY, 2014, 14 (04): : 35 - 44
  • [47] Anisotropic Denoising of 3D Point Clouds by Aggregation of Multiple Surface-Adaptive Estimates
    Xu, Zhongwei
    Foi, Alessandro
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (06) : 2851 - 2868
  • [48] Automatic Pairwise Coarse Registration of Terrestrial Point Clouds Using 3D Line Features
    Fu, Yongjian
    Li, Zongchun
    Xiong, Feng
    He, Hua
    Deng, Yong
    Wang, Wenqi
    IEEE ACCESS, 2022, 10 : 115007 - 115024
  • [49] Learning to Segment 3D Point Clouds in 2D Image Space
    Lyu, Yecheng
    Huang, Xinming
    Zhang, Ziming
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 12252 - 12261
  • [50] Resampling Point Clouds Using Series of Local Triangulations
    Suriyababu, Vijai Kumar
    Vuik, Cornelis
    Moeller, Matthias
    JOURNAL OF IMAGING, 2025, 11 (02)