Transfer Learning Based Lightweight Ensemble Model for Imbalanced Breast Cancer Classification

被引:8
|
作者
Garg, Shankey [1 ]
Singh, Pradeep [1 ]
机构
[1] Natl Inst Technol Raipur, Comp Sci & Engn, Raipur 492010, Chhattisgarh, India
关键词
Convolution; Breast cancer; Feature extraction; Computational modeling; Computer architecture; Transfer learning; Deep learning; lightweight model; classification; ensemble;
D O I
10.1109/TCBB.2022.3174091
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Automated classification of breast cancer can often save lives, as manual detection is usually time-consuming & expensive. Since the last decade, deep learning techniques have been most widely used for the automatic classification of breast cancer using histopathology images. This paper has performed the binary and multi-class classification of breast cancer using a transfer learning-based ensemble model. To analyze the correctness and reliability of the proposed model, we have used an imbalance IDC dataset, an imbalance BreakHis dataset in the binary class scenario, and a balanced BACH dataset for the multi-class classification. A lightweight shallow CNN model with batch normalization technology to accelerate convergence is aggregated with lightweight MobileNetV2 to improve learning and adaptability. The aggregation output is fed into a multilayer perceptron to complete the final classification task. The experimental study on all three datasets was performed and compared with the recent works. We have fine-tuned three different pre-trained models (ResNet50, InceptionV4, and MobilNetV2) and compared it with the proposed lightweight ensemble model in terms of execution time, number of parameters, model size, etc. In both the evaluation phases, it is seen that our model outperforms in all three datasets.
引用
收藏
页码:1529 / 1539
页数:11
相关论文
共 50 条
  • [41] Breast cancer classification using snapshot ensemble deep learning model and t-distributed stochastic neighbor embedding
    Sharma, Nonita
    Sharma, K. P.
    Mangla, Monika
    Rani, Rajneesh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 4011 - 4029
  • [42] Evolutionary Ensemble Model for Breast Cancer Classification
    Janghel, R. R.
    Shukla, Anupam
    Sharma, Sanjeev
    Gnaneswar, A. V.
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2014, PT II, 2014, 8795 : 8 - 16
  • [43] Early predictive model for breast cancer classification using blended ensemble learning
    Mahesh, T. R.
    Kumar, V. Vinoth
    Vivek, V.
    Raghunath, K. M. Karthick
    Madhuri, G. Sindhu
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (01) : 188 - 197
  • [44] Classification of Breast Cancer Histopathological Images with Deep Transfer Learning Methods
    Tezcan, Cemal Efe
    Kiras, Berk
    Bilgin, Gokhan
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [45] Early predictive model for breast cancer classification using blended ensemble learning
    T. R. Mahesh
    V. Vinoth Kumar
    V. Vivek
    K. M. Karthick Raghunath
    G. Sindhu Madhuri
    International Journal of System Assurance Engineering and Management, 2024, 15 : 188 - 197
  • [46] Intelligent Ultrasound Imaging for Enhanced Breast Cancer Diagnosis: Ensemble Transfer Learning Strategies
    Rao, Kuncham Sreenivasa
    Terlapu, Panduranga Vital
    Jayaram, D.
    Raju, Kalidindi Kishore
    Kumar, G. Kiran
    Pemula, Rambabu
    Gopalachari, M. Venu
    Rakesh, S.
    IEEE ACCESS, 2024, 12 : 22243 - 22263
  • [47] Fusing of Deep Learning, Transfer Learning and GAN for Breast Cancer Histopathological Image Classification
    Mai Bui Huynh Thuy
    Vinh Truong Hoang
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 255 - 266
  • [48] Optimizing the Performance of Breast Cancer Classification by Employing the Same Domain Transfer Learning from Hybrid Deep Convolutional Neural Network Model
    Alzubaidi, Laith
    Al-Shamma, Omran
    Fadhel, Mohammed A.
    Farhan, Laith
    Zhang, Jinglan
    Duan, Ye
    ELECTRONICS, 2020, 9 (03)
  • [49] Breast Cancer Prognosis Based on Transfer Learning Techniques in Deep Neural Networks
    Diwakaran, M.
    Surendran, D.
    INFORMATION TECHNOLOGY AND CONTROL, 2023, 52 (02): : 381 - 396
  • [50] An ensemble based lightweight deep learning model for the prediction of cardiovascular diseases from electrocardiogram images
    Hasan, Md Nahid
    Hossain, Md Ali
    Rahman, Md Anisur
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 141