Transfer Learning Based Lightweight Ensemble Model for Imbalanced Breast Cancer Classification

被引:8
|
作者
Garg, Shankey [1 ]
Singh, Pradeep [1 ]
机构
[1] Natl Inst Technol Raipur, Comp Sci & Engn, Raipur 492010, Chhattisgarh, India
关键词
Convolution; Breast cancer; Feature extraction; Computational modeling; Computer architecture; Transfer learning; Deep learning; lightweight model; classification; ensemble;
D O I
10.1109/TCBB.2022.3174091
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Automated classification of breast cancer can often save lives, as manual detection is usually time-consuming & expensive. Since the last decade, deep learning techniques have been most widely used for the automatic classification of breast cancer using histopathology images. This paper has performed the binary and multi-class classification of breast cancer using a transfer learning-based ensemble model. To analyze the correctness and reliability of the proposed model, we have used an imbalance IDC dataset, an imbalance BreakHis dataset in the binary class scenario, and a balanced BACH dataset for the multi-class classification. A lightweight shallow CNN model with batch normalization technology to accelerate convergence is aggregated with lightweight MobileNetV2 to improve learning and adaptability. The aggregation output is fed into a multilayer perceptron to complete the final classification task. The experimental study on all three datasets was performed and compared with the recent works. We have fine-tuned three different pre-trained models (ResNet50, InceptionV4, and MobilNetV2) and compared it with the proposed lightweight ensemble model in terms of execution time, number of parameters, model size, etc. In both the evaluation phases, it is seen that our model outperforms in all three datasets.
引用
收藏
页码:1529 / 1539
页数:11
相关论文
共 50 条
  • [31] A Robust Enhanced Ensemble Learning Method for Breast Cancer Data Diagnosis on Imbalanced Data
    Wang, Zhenzhen
    Xie, Junde
    Zhang, Jia
    IEEE ACCESS, 2024, 12 : 189776 - 189788
  • [32] Assessing the impact of parameters tuning in ensemble based breast Cancer classification
    Idri, Ali
    Bouchra, El Ouassif
    Hosni, Mohamed
    Abnane, Ibtissam
    HEALTH AND TECHNOLOGY, 2020, 10 (05) : 1239 - 1255
  • [33] Imbalanced Learning of Fault Data Combined with Cloud Model and Ensemble Classification
    Ma S.
    Zhao R.
    Wu Y.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2023, 43 (06): : 1114 - 1120and1243
  • [34] Classification of Breast Cancer Images by Transfer Learning Approach Using Different Patching Sizes
    Celik, Emre
    Bilgin, Gokhan
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [35] Deep Learning-Based Multi-Modal Ensemble Classification Approach for Human Breast Cancer Prognosis
    Jadoon, Ehtisham Khan
    Khan, Fiaz Gul
    Shah, Sajid
    Khan, Ahmad
    ElAffendi, Muhammed
    IEEE ACCESS, 2023, 11 : 85760 - 85769
  • [36] Application of transfer learning and ensemble learning in image-level classification for breast histopathology
    Zheng, Yuchao
    Li, Chen
    Zhou, Xiaomin
    Chen, Haoyuan
    Xu, Hao
    Li, Yixin
    Zhang, Haiqing
    Li, Xiaoyan
    Sun, Hongzan
    Huang, Xinyu
    Grzegorzek, Marcin
    INTELLIGENT MEDICINE, 2023, 3 (02): : 115 - 128
  • [37] A Genetic-Based Ensemble Learning Applied to Imbalanced Data Classification
    Klikowski, Jakub
    Ksieniewicz, Pawel
    Wozniak, Michal
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2019), PT II, 2019, 11872 : 340 - 352
  • [38] A synthetic neighborhood generation based ensemble learning for the imbalanced data classification
    Zhi Chen
    Tao Lin
    Xin Xia
    Hongyan Xu
    Sha Ding
    Applied Intelligence, 2018, 48 : 2441 - 2457
  • [39] A synthetic neighborhood generation based ensemble learning for the imbalanced data classification
    Chen, Zhi
    Lin, Tao
    Xia, Xin
    Xu, Hongyan
    Ding, Sha
    APPLIED INTELLIGENCE, 2018, 48 (08) : 2441 - 2457
  • [40] Breast cancer classification using snapshot ensemble deep learning model and t-distributed stochastic neighbor embedding
    Nonita Sharma
    K. P. Sharma
    Monika Mangla
    Rajneesh Rani
    Multimedia Tools and Applications, 2023, 82 : 4011 - 4029