Object Detection Algorithm of UAV Aerial Photography Image Based on Anchor-Free Algorithms

被引:6
作者
Hu, Qi [1 ]
Li, Lin [2 ]
Duan, Jin [2 ]
Gao, Meiling [2 ]
Liu, Gaotian [2 ]
Wang, Zhiyuan [2 ]
Huang, Dandan [2 ]
机构
[1] Chang Chun Univ Sci & Technol, Coll Artificial Intelligence, Changchun 130022, Peoples R China
[2] Chang Chun Univ Sci & Technol, Coll Elect Informat Engn, Changchun 130022, Peoples R China
关键词
object detection; drone aerial photography; global context block; multi-scale feature fusion; adaptive equalization network;
D O I
10.3390/electronics12061339
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the problems of the difficult extraction of small target feature information, complex background, and variable target scale in unmanned aerial vehicle (UAV) aerial photography images. In this paper, an anchor-free target detection algorithm based on fully convolutional one-stage object detection (FCOS) for UAV aerial photography images is proposed. For the problem of complex backgrounds, the global context module is introduced in the ResNet50 network, which is combined with feature pyramid networks (FPN) as the backbone feature extraction network to enhance the feature representation of targets in complex backgrounds. To address the problem of the difficult detection of small targets, an adaptive feature balancing sub-network is designed to filter the invalid information generated at all levels of feature fusion, strengthen multi-layer features, and improve the recognition capability of the model for small targets. To address the problem of variable target scales, complete intersection over union (CIOU) Loss is used to optimize the regression loss and strengthen the model's ability to locate multi-scale targets. The algorithm of this paper is compared quantitatively and qualitatively on the VisDrone dataset. The experiments show that the proposed algorithm improves 4.96% on average precision (AP) compared with the baseline algorithm FCOS, and the detection speed is 35 frames per second (FPS), confirming that the algorithm has satisfactory detection performance, real-time inference speed, and has effectively improved the problem of missed detection and false detection of targets in UAV aerial images.
引用
收藏
页数:14
相关论文
共 26 条
[1]   GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond [J].
Cao, Yue ;
Xu, Jiarui ;
Lin, Stephen ;
Wei, Fangyun ;
Hu, Han .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :1971-1980
[2]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[3]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[4]  
Hou X., 2020, NATL SECURITY GEOPHY, P162
[5]   CornerNet: Detecting Objects as Paired Keypoints [J].
Law, Hei ;
Deng, Jia .
COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 :765-781
[6]   Small Object Detection in Unmanned Aerial Vehicle Images Using Feature Fusion and Scaling-Based Single Shot Detector With Spatial Context Analysis [J].
Liang, Xi ;
Zhang, Jing ;
Zhuo, Li ;
Li, Yuzhao ;
Tian, Qi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) :1758-1770
[7]   Focal Loss for Dense Object Detection [J].
Lin, Tsung-Yi ;
Goyal, Priya ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2999-3007
[8]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[9]  
Liu S., 2019, arXiv
[10]   HollowBox: An anchor-free UAV detection method [J].
Liu, Shanliang ;
Qu, Jingyi ;
Wu, Renbiao .
IET IMAGE PROCESSING, 2022, 16 (11) :2922-2936