Genome-wide identification, evolution, and expression analysis of MLO gene family in melon (Cucumis melo L.)

被引:4
|
作者
Zhang, Taifeng [1 ,2 ]
Xu, Nan [1 ,2 ]
Amanullah, Sikandar [1 ,2 ]
Gao, Peng [1 ,2 ]
机构
[1] Minist Agr & Rural Affairs, Key Lab Biol & Genet Improvement Hort Crops Northe, Harbin, Peoples R China
[2] Northeast Agr Univ, Coll Hort & Landscape Architecture, Harbin, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Cucumis melo L; genome-wide; MLO gene family; expression analysis; gene clone; POWDERY MILDEW RESISTANCE; NONHOST RESISTANCE; CELL-DEATH; PROTEIN; DEFENSE; BARLEY; INFECTION; SUSCEPTIBILITY; ARABIDOPSIS; MODULATOR;
D O I
10.3389/fpls.2023.1144317
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Powdery mildew (PM) is one of the main fungal diseases that appear during the cultivation of the melon fruit crop. Mildew Resistance Locus "O" (MLO) is known as a gene family and has seven conserved transmembrane domains. An induced functional loss of a specific MLO gene could mainly confer PM resistance to melons. However, the genomic structure of MLO genes and its main role in PM resistance still remain unclear in melon. In this study, bioinformatic analysis identified a total of 14 MLO gene family members in the melon genome sequence, and these genes were distributed in an uneven manner on eight chromosomes. The phylogenetic analysis divided the CmMLO genes into five different clades, and gene structural analysis showed that genes in the same clade had similar intron and exon distribution patterns. In addition, by cloning the CmMLO gene sequence in four melon lines, analyzing the CmMLO gene expression pattern after infection, and making microscopic observations of the infection pattern of PM, we concluded that the CmMLO5 (MELO3C012438) gene plays a negative role in regulating PM-resistance in the susceptible melon line (Topmark), and the critical time point for gene function was noticed at 24 and 72 hours after PM infection. The mutational analysis exhibited a single base mutation at 572 bp, which further results in loss of protein function, thus conferring PM resistance in melon. In summary, our research evidence provides a thorough understanding of the CmMLO gene family and demonstrates their potential role in disease resistance, as well as a theoretical foundation for melon disease resistance breeding.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Genome-Wide Identification of β-Ketoacyl CoA Synthase Gene Family in Melon (Cucumis melo L.) and Its Expression Analysis in Autotoxicity, Saline-Alkali, and Microplastic Exposure Environments
    Zhang, Lizhen
    Wang, Mingcheng
    Tang, Xianhuan
    Yang, Xinyue
    Zhang, Zhizhong
    Wu, Jinghua
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2025, 47 (03)
  • [32] Genome-Wide Identification of YABBY Gene Family in Cucurbitaceae and Expression Analysis in Cucumber (Cucumis sativus L.)
    Yin, Shuai
    Li, Sen
    Gao, Yiming
    Bartholomew, Ezra S.
    Wang, Ruijia
    Yang, Hua
    Liu, Chang
    Chen, Xiaofeng
    Wang, Ying
    Liu, Xingwang
    Ren, Huazhong
    GENES, 2022, 13 (03)
  • [33] The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns
    Jin, Yazhong
    Zhang, Chong
    Liu, Wei
    Tang, Yufan
    Qi, Hongyan
    Chen, Hao
    Cao, Songxiao
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [34] Genome-wide identification of mitogen-activated protein kinase (MAPK) cascade and expression profiling of CmMAPKs in melon (Cucumis melo L.)
    Zhang, Xiaolan
    Li, Yuepeng
    Xing, Qiaojuan
    Yue, Lingqi
    Qi, Hongyan
    PLOS ONE, 2020, 15 (05):
  • [35] Genome-wide identification of the melon (Cucumis melo L.) response regulator gene family and functional analysis of CmRR6 and CmPRR3 in response to cold stress
    Li, Lili
    Zhang, Xiuyue
    Ding, Fei
    Hou, Juan
    Wang, Jiyu
    Luo, Renren
    Mao, Wenwen
    Li, Xiang
    Zhu, Huayu
    Yang, Luming
    Li, Ying
    Hu, Jianbin
    JOURNAL OF PLANT PHYSIOLOGY, 2024, 292
  • [36] The Cinnamyl Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns
    Jin, Yazhong
    Zhang, Chong
    Liu, Wei
    Qi, Hongyan
    Chen, Hao
    Cao, Songxiao
    PLOS ONE, 2014, 9 (07):
  • [37] The phylogeny and expression profiles of the lipoxygenase (LOX) family genes in the melon (Cucumis melo L.) genome
    Zhang, Chong
    Jin, Yazhong
    Liu, Jieying
    Tang, Yufan
    Cao, Songxiao
    Qi, Hongyan
    SCIENTIA HORTICULTURAE, 2014, 170 : 94 - 102
  • [38] Genome-Wide Identification and Expression Analysis of SnRK Gene Family under Abiotic Stress in Cucumber (Cucumis sativus L.)
    Luo, Yanyan
    Niu, Yuan
    Gao, Rong
    Wang, Chunlei
    Liao, Weibiao
    AGRONOMY-BASEL, 2022, 12 (07):
  • [39] Genome-wide identification and comparative analysis of MATE gene family in Cucurbitaceae species and their regulatory role in melon (Cucumis melo) under salt stress
    Iftikhar Hussain Shah
    Muhammad Aamir Manzoor
    Irfan Ali Sabir
    Muhammad Ashraf
    Fazal Haq
    Samiah Arif
    Muhammad Abdullah
    Qingliang Niu
    Yidong Zhang
    Horticulture, Environment, and Biotechnology, 2022, 63 : 595 - 612
  • [40] Genome-wide identification and comparative analysis of MATE gene family in Cucurbitaceae species and their regulatory role in melon (Cucumis melo) under salt stress
    Shah, Iftikhar Hussain
    Manzoor, Muhammad Aamir
    Sabir, Irfan Ali
    Ashraf, Muhammad
    Haq, Fazal
    Arif, Samiah
    Abdullah, Muhammad
    Niu, Qingliang
    Zhang, Yidong
    HORTICULTURE ENVIRONMENT AND BIOTECHNOLOGY, 2022, 63 (04) : 595 - 612