Pavement Roughness Grade Recognition Based on One-dimensional Residual Convolutional Neural Network

被引:7
|
作者
Xu, Juncai [1 ,2 ]
Yu, Xiong [2 ]
机构
[1] Minist Educ, Key Lab Nondestruct Testing Technol, Nanchang 400074, Peoples R China
[2] Case Western Reserve Univ, Dept Civil Engn, Cleveland Hts, OH 44106 USA
基金
中国国家自然科学基金;
关键词
pavement roughness; 1; 4 vehicle vibration model; white noise method; residual convolutional network; ROAD ROUGHNESS;
D O I
10.3390/s23042271
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A pavement's roughness seriously affects its service life and driving comfort. Considering the complexity and low accuracy of the current recognition algorithms for the roughness grade of pavements, this paper proposes a real-time pavement roughness recognition method with a lightweight residual convolutional network and time-series acceleration. Firstly, a random input pavement model is established by the white noise method, and the pavement roughness of a 1/4 vehicle vibration model is simulated to obtain the vehicle vibration response data. Then, the residual convolutional network is used to learn the deep-level information of the sample signal. The residual convolutional neural network recognizes the pavement roughness grade quickly and accurately. The experimental results show that the residual convolutional neural network has a robust feature-capturing ability for vehicle vibration signals, and the classification features can be obtained quickly. The accuracy of pavement roughness classification is as high as 98.7%, which significantly improves the accuracy and reduces the computational effort of the recognition algorithm, and is suitable for pavement roughness grade classification.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] One-Dimensional EEG Artifact Removal Network Based on Convolutional Neural Networks
    Xiong, Jun
    Meng, Xiang-Long
    Chen, Zhao-Qi
    Wang, Chuan-Sheng
    Zhang, Fu-Quan
    Grau, Antoni
    Chen, Yang
    Huang, Jing-Wei
    Journal of Network Intelligence, 2024, 9 (01): : 142 - 159
  • [32] Component Analysis of Gas Mixture Based on One-Dimensional Convolutional Neural Network
    Zhan, Canjian
    He, Jiafeng
    Pan, Mingjin
    Luo, Dehan
    SENSORS, 2021, 21 (02) : 1 - 11
  • [33] A fine-tuning deep residual convolutional neural network for emotion recognition based on frequency-channel matrices representation of one-dimensional electroencephalography
    Chen, Jichi
    Cui, Yuguo
    Qian, Cheng
    He, Enqiu
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2025, 28 (03) : 303 - 313
  • [34] Acoustic detection and localization of gas pipeline leak based on residual connection and one-dimensional separable convolutional neural network
    Yan, Wendi
    Liu, Wei
    Bi, Hongbo
    Jiang, Chunlei
    Yang, Dongfeng
    Sun, Shuang
    Cui, Kunyu
    Chen, Minghu
    Sun, Yu
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (14) : 2637 - 2647
  • [35] Biomolecule classification by multiscale one-dimensional convolutional neural network
    Chang, Chia-En
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 141A - 141A
  • [36] One-dimensional residual convolutional neural network and percussion-based method for pipeline leakage and water deposit detection
    Peng, Longguang
    Zhang, Jicheng
    Lu, Shengqing
    Li, Yuanqi
    Du, Guofeng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 177 : 1142 - 1153
  • [37] Pavement Crack Recognition Algorithm Based on Transposed Convolutional Neural Network
    Liu Q.
    Yu B.
    Meng X.
    Zhang X.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2021, 49 (12): : 124 - 132
  • [38] Recognition of hidden distress in asphalt pavement based on convolutional neural network
    Liu, Wenchao
    Luo, Rong
    Chen, Yu
    Yu, Xiaohe
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2023, 24 (02)
  • [39] Improved One-Dimensional Convolutional Neural Networks for Human Motion Recognition
    Wang, Shengzhi
    Xiao, Shuo
    Huang, Zhenzhen
    Xu, Zhiou
    Chen, Wei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2544 - 2547
  • [40] A novel one-dimensional convolutional neural network-based method for emotion recognition of electric power industry workers
    Ying, Guo
    Hao, Chen
    ENERGY REPORTS, 2023, 9 : 763 - 771