QBoost for regression problems: solving partial differential equations

被引:2
|
作者
Goes, Caio B. D. [1 ]
Maciel, Thiago O. O. [1 ]
Pollachini, Giovani G. G. [1 ,3 ]
Salazar, Juan P. L. C. [2 ]
Cuenca, Rafael G. G. [2 ]
Duzzioni, Eduardo I. I. [1 ,3 ]
机构
[1] Univ Fed Santa Catarina, Dept Fis, Campus Joao David Ferreira Lima, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Fed Santa Catarina, Engn Aerosp, Campus Joinville, BR-89219600 Joinville, SC, Brazil
[3] Quanby Computacao Quant, Florianopolis, SC, Brazil
关键词
Quantum computing; Partial differential equations; QBoost; Neural network; SUPPORT VECTOR REGRESSION; MACHINE; PREDICTION; ALGORITHM;
D O I
10.1007/s11128-023-03871-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hybrid algorithm based on machine learning and quantum ensemble learning is proposed to find an approximate solution to a partial differential equation with good precision and favorable scaling in the required number of qubits. The classical component consists in training several regressors (weak-learners), capable of solving a partial differential equation approximately using machine learning. The quantum component consists in adapting the QBoost algorithm to solve regression problems to build an ensemble of classical learners. We have successfully applied our framework to solve the 1D Burgers' equation with viscosity, showing that the quantum ensemble method really improves the solutions produced by classical weak-learners. We also implemented the algorithm on the D-Wave Systems, confirming the good performance of the quantum solution compared to the simulated annealing and exact solver methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A simple embedding method for solving partial differential equations on surfaces
    Ruuth, Steven J.
    Merriman, Barry
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (03) : 1943 - 1961
  • [32] A COMPUTATIONAL APPROACH FOR THE ANALYTICAL SOLVING OF PARTIAL-DIFFERENTIAL EQUATIONS
    CHEBTERRAB, ES
    VONBULOW, K
    COMPUTER PHYSICS COMMUNICATIONS, 1995, 90 (01) : 102 - 116
  • [33] The Application of Cellular Neural Networks for Solving Partial Differential Equations
    Sun Lijuan (Department of Computer Engineering
    The Journal of China Universities of Posts and Telecommunications, 1997, (01) : 47 - 52
  • [34] An Artificial Neural Networks Method for Solving Partial Differential Equations
    Alharbi, Abir
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1425 - 1428
  • [35] A Cylindrical Basis Function for Solving Partial Differential Equations on Manifolds
    Asante-Asamani, E. O.
    Wang, Lei
    Yu, Zeyun
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 233 - 244
  • [36] Numerical Multistep Approach for Solving Fractional Partial Differential Equations
    Al-Smadi, Mohammed
    Freihat, Asad
    Khalil, Hammad
    Momani, Shaher
    Khan, Rahmat Ali
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 14 (03)
  • [37] DGM: A deep learning algorithm for solving partial differential equations
    Sirignano, Justin
    Spiliopoulos, Konstantinos
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 1339 - 1364
  • [38] Multilayer neural networks for solving a class of partial differential equations
    He, S
    Reif, K
    Unbehauen, R
    NEURAL NETWORKS, 2000, 13 (03) : 385 - 396
  • [39] Artificial neural networks for solving ordinary and partial differential equations
    Lagaris, IE
    Likas, A
    Fotiadis, DI
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (05): : 987 - 1000
  • [40] SVM for solving ordinary and partial differential equations with regular boundary
    Wu, YX
    Chai, X
    Li, Y
    Yan, WL
    Shen, XQ
    PROGRESS IN INTELLIGENCE COMPUTATION & APPLICATIONS, 2005, : 521 - 528