HVS-Based Perception-Driven No-Reference Omnidirectional Image Quality Assessment

被引:14
|
作者
Liu, Yun [1 ]
Yin, Xiaohua [1 ]
Wang, Yan [1 ]
Yin, Zixuan [1 ]
Zheng, Zhi [2 ]
机构
[1] Liaoning Univ, Coll Informat, Shenyang 110036, Liaoning, Peoples R China
[2] Beijing Jiaotong Univ, Dept Elect & Informat Engn, Beijing 100091, Peoples R China
基金
中国国家自然科学基金;
关键词
Visualization; Image quality; Distortion; Predictive models; Feature extraction; Degradation; Taylor series; Human visual system (HVS); omnidirectional images; quality assessment; support vector regression (SVR); visual attention mechanism; CLASSIFICATION; INDEX;
D O I
10.1109/TIM.2022.3232792
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Evaluating the quality of panoramic images has gradually become a hot research topic with the development of virtual reality (VR) technology. Therefore, a novel method is proposed to assess the quality of omnidirectional images without any reference information. Inspired by the characteristics of the human visual system (HVS) and visual attention mechanism, the proposed model is composed of the structure feature, statistical feature, and saliency feature to measure the panoramic image quality, in which structure information is expressed by combining the local Taylor series with the local binary pattern (LBP) operator, gradient-based statistical information of panoramic images are summarized comprehensively from three levels: the gradient measure, the relative gradient magnitude, and the relative gradient orientation, and the saliency detection by combining simple priors (SDSP)-based saliency information is extracted in this article to enrich perception feature of our model and improve the visibility of the saliency region in the omnidirectional image. Finally, according to the subjective scores provided and the above features, we use support vector regression (SVR) to predict the objective scores. The experiments indicate that our model has more substantial competitiveness and stability than other state-of-the-art methods on two reliable databases.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] No-reference visual quality assessment for image inpainting
    Voronin, V. V.
    Frantc, V. A.
    Marchuk, V. I.
    Sherstobitov, A. I.
    Egiazarian, K.
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XIII, 2015, 9399
  • [42] The Effect of Uncertainty on No-Reference Image Quality Assessment
    Raei, Mohammadreza
    Mansouri, Azadeh
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 223 - 227
  • [43] No-Reference Image Quality Assessment in Spatial Domain
    Sun, Tao
    Zhu, Xingjie
    Pan, Jeng-Shyang
    Wen, Jiajun
    Meng, Fanqiang
    GENETIC AND EVOLUTIONARY COMPUTING, 2015, 329 : 381 - 388
  • [44] Analysis and Design of No-Reference Image Quality Assessment
    Tian, Yuan
    Zhu, Ming
    Wang, Ligong
    2008 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2008, : 349 - +
  • [45] No-reference/Blind Image Quality Assessment: A Survey
    Xu, Shaoping
    Jiang, Shunliang
    Min, Weidong
    IETE TECHNICAL REVIEW, 2017, 34 (03) : 223 - 245
  • [46] A No-Reference Quality Assessment Model for Screen Content Videos via Hierarchical Spatiotemporal Perception
    Liu, Zhihong
    Zeng, Huanqiang
    Chen, Jing
    Ding, Rui
    Shi, Yifan
    Hou, Junhui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1422 - 1435
  • [47] Dynamically attentive viewport sequence for no-reference quality assessment of omnidirectional images
    Wang, Yuhong
    Li, Hong
    Jiang, Qiuping
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [48] Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
    Bosse, Sebastian
    Maniry, Dominique
    Mueller, Klaus-Robert
    Wiegand, Thomas
    Samek, Wojciech
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 206 - 219
  • [49] Dual-Channel Multi-Task CNN for No-Reference Screen Content Image Quality Assessment
    Zhang, Chaofan
    Huang, Ziqing
    Liu, Shiguang
    Xiao, Jian
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 5011 - 5025
  • [50] Enhanced image no-reference quality assessment based on colour space distribution
    Liu Hao
    Li Ce
    Zhang Dong
    Zhou Yannan
    Du Shaoyi
    IET IMAGE PROCESSING, 2020, 14 (05) : 807 - 817