HVS-Based Perception-Driven No-Reference Omnidirectional Image Quality Assessment

被引:14
|
作者
Liu, Yun [1 ]
Yin, Xiaohua [1 ]
Wang, Yan [1 ]
Yin, Zixuan [1 ]
Zheng, Zhi [2 ]
机构
[1] Liaoning Univ, Coll Informat, Shenyang 110036, Liaoning, Peoples R China
[2] Beijing Jiaotong Univ, Dept Elect & Informat Engn, Beijing 100091, Peoples R China
基金
中国国家自然科学基金;
关键词
Visualization; Image quality; Distortion; Predictive models; Feature extraction; Degradation; Taylor series; Human visual system (HVS); omnidirectional images; quality assessment; support vector regression (SVR); visual attention mechanism; CLASSIFICATION; INDEX;
D O I
10.1109/TIM.2022.3232792
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Evaluating the quality of panoramic images has gradually become a hot research topic with the development of virtual reality (VR) technology. Therefore, a novel method is proposed to assess the quality of omnidirectional images without any reference information. Inspired by the characteristics of the human visual system (HVS) and visual attention mechanism, the proposed model is composed of the structure feature, statistical feature, and saliency feature to measure the panoramic image quality, in which structure information is expressed by combining the local Taylor series with the local binary pattern (LBP) operator, gradient-based statistical information of panoramic images are summarized comprehensively from three levels: the gradient measure, the relative gradient magnitude, and the relative gradient orientation, and the saliency detection by combining simple priors (SDSP)-based saliency information is extracted in this article to enrich perception feature of our model and improve the visibility of the saliency region in the omnidirectional image. Finally, according to the subjective scores provided and the above features, we use support vector regression (SVR) to predict the objective scores. The experiments indicate that our model has more substantial competitiveness and stability than other state-of-the-art methods on two reliable databases.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] HVS-Based Perception-Driven No-Reference Omnidirectional Image Quality Assessment
    Liu, Yun
    Yin, Xiaohua
    Wang, Yan
    Yin, Zixuan
    Zheng, Zhi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [2] HVS-Based Perception-Driven No-Reference Omnidirectional Image Quality Assessment
    Liu, Yun
    Yin, Xiaohua
    Wang, Yan
    Yin, Zixuan
    Zheng, Zhi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [3] Eye Scanpath Prediction-Based No-Reference Quality Assessment of Omnidirectional Images
    Hu, Huixin
    Shao, Feng
    Chen, Hangwei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [4] No-Reference Image Quality Assessment Based on HVS
    Fu, Yan
    Wang, Shengchun
    2016 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C), 2016, : 1093 - 1096
  • [5] No-reference Omnidirectional Image Quality Assessment Based on Joint Network
    Zhang, Chaofan
    Liu, Shiguang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 943 - 951
  • [6] No-Reference Image Quality Assessment: An Attention Driven Approach
    Chen, Diqi
    Wang, Yizhou
    Gao, Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 6496 - 6506
  • [7] Saliency-Guided No-Reference Omnidirectional Image Quality Assessment via Scene Content Perceiving
    Zhang, Youzhi
    Wan, Lifei
    Liu, Deyang
    Zhou, Xiaofei
    An, Ping
    Shan, Caifeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [8] HVS-based Image Quality Assessment for Digital Cinema
    You, Junyong
    Rahayu, Fitri N.
    Reiter, Ulrich
    Perkis, Andrew
    IMAGE QUALITY AND SYSTEM PERFORMANCE VII, 2010, 7529
  • [9] Domain Fingerprints for No-Reference Image Quality Assessment
    Xia, Weihao
    Yang, Yujiu
    Xue, Jing-Hao
    Xiao, Jing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (04) : 1332 - 1341
  • [10] StyleAM: Perception-Oriented Unsupervised Domain Adaption for No-Reference Image Quality Assessment
    Lu, Yiting
    Li, Xin
    Liu, Jianzhao
    Chen, Zhibo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 2043 - 2058