Accelerating industrial-level CO2 electroreduction kinetics on isolated zinc centers via sulfur-boosted bicarbonate dissociation

被引:47
作者
Zheng, Wanzhen [1 ]
Wang, Dashuai [2 ]
Cui, Wenjun [4 ]
Sang, Xiahan [4 ]
Qin, Xuetao [8 ,9 ,10 ]
Zhao, Zilin [1 ]
Li, Zhongjian [1 ]
Yang, Bin [1 ]
Zhong, Miao [5 ]
Lei, Lecheng [1 ,2 ]
Zheng, Qiang [6 ]
Yao, Siyu [1 ]
Wu, Gang [7 ]
Hou, Yang [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Key Lab Biomass Chem Engn, Minist Educ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[2] Inst Zhejiang Univ Quzhou, Quzhou 324000, Peoples R China
[3] Donghai Lab, Zhoushan, Peoples R China
[4] Wuhan Univ Technol, Sch Mat Sci & Engn, Res & Testing Ctr Mat, Wuhan 430070, Peoples R China
[5] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct,Jiangsu Key Lab, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210023, Peoples R China
[6] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China
[7] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[8] Peking Univ, Beijing Natl Lab Mol Sci, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[9] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[10] Peking Univ, BIC ESAT, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
REDUCTION; MODEL;
D O I
10.1039/d2ee02725a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Improving the proton transfer rate in the proton-coupled electron transfer process is the key to accelerating the reaction kinetics of CO2 electroreduction (CO2ER). However, the synchronous enhancement of proton feeding and CO2 activation are hardly achieved over the single active site, making rapid conversion with high product selectivity a considerable challenge. Herein, we develop an isolated zinc site embedded in nitrogen, sulfur co-doped hierarchically porous carbon (denoted as Zn-NS-C) electrocatalyst toward CO2ER, in which central Zn-N-4 active sites are associated with adjacent S dopants in Zn-NS-C. Kinetic experiments combined with in situ spectroscopy unveil that the auxiliary S sites promote bicarbonate dissociation kinetics for proton feeding and atomically dispersed Zn-N-4 sites are likely active centers for the CO2ER. Theoretical calculations reveal the synergistic effects of S and Zn-N-4 sites that improve the proton transfer rate and boost the reaction kinetics of *CO2 protonation to form *COOH. As a result, this catalyst delivers an excellent CO2ER performance with near-unity CO selectivity at an industrial-level current density of 200 mA cm(-2) and a high turnover frequency of 11 419 h(-1). Furthermore, the high CO productivity on the Zn-NS-C was confirmed by the highly increased partial C2H4 current density in the Zn-NS-C/Cu tandem catalyst.
引用
收藏
页码:1007 / 1015
页数:9
相关论文
共 34 条
[11]   Exclusive Ni-N4 Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction [J].
Li, Xiaogang ;
Bi, Wentuan ;
Chen, Minglong ;
Sun, Yuexiang ;
Ju, Huanxin ;
Yan, Wensheng ;
Zhu, Junfa ;
Wu, Xiaojun ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (42) :14889-14892
[12]   Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window [J].
Liu, Chuhao ;
Wu, Yue ;
Sun, Kaian ;
Fang, Jinjie ;
Huang, Aijian ;
Pan, Yuan ;
Cheong, Weng-Chon ;
Zhuang, Zewen ;
Zhuang, Zhongbin ;
Yuan, Qiuhua ;
Xin, Huolin L. ;
Zhang, Chao ;
Zhang, Jiangwei ;
Xiao, Hai ;
Chen, Chen ;
Li, Yadong .
CHEM, 2021, 7 (05) :1297-1307
[13]   Atomic Ni Anchored Covalent Triazine Framework as High Efficient Electrocatalyst for Carbon Dioxide Conversion [J].
Lu, Chenbao ;
Yang, Jian ;
Wei, Shice ;
Bi, Shuai ;
Xia, Ying ;
Chen, Mingxi ;
Hou, Yang ;
Qiu, Ming ;
Yuan, Chris ;
Su, Yuezeng ;
Zhang, Fan ;
Liang, Haiwei ;
Zhuang, Xiaodong .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (10)
[14]   Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper [J].
Ma, Wenchao ;
Xie, Shunji ;
Liu, Tongtong ;
Fan, Qiyuan ;
Ye, Jinyu ;
Sun, Fanfei ;
Jiang, Zheng ;
Zhang, Qinghong ;
Cheng, Jun ;
Wang, Ye .
NATURE CATALYSIS, 2020, 3 (06) :478-487
[15]   Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces [J].
Ma, Wenchao ;
Xie, Shunji ;
Zhang, Xia-Guang ;
Sun, Fanfei ;
Kang, Jincan ;
Jiang, Zheng ;
Zhang, Qinghong ;
Wu, De-Yin ;
Wang, Ye .
NATURE COMMUNICATIONS, 2019, 10 (1)
[16]   The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2 [J].
Moller, Tim ;
Ngo Thanh, Trung ;
Wang, Xingli ;
Ju, Wen ;
Jovanov, Zarko ;
Strasser, Peter .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (11) :5995-6006
[17]   Mechanistic Insights into the Electrochemical Reduction of CO2 to CO on Nanostructured Ag Surfaces [J].
Rosen, Jonathan ;
Hutchings, Gregory S. ;
Lu, Qi ;
Rivera, Sean ;
Zhou, Yang ;
Vlachos, Dionisios G. ;
Jiao, Feng .
ACS CATALYSIS, 2015, 5 (07) :4293-4299
[18]   Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity [J].
Shang, Huishan ;
Zhou, Xiangyi ;
Dong, Juncai ;
Li, Ang ;
Zhao, Xu ;
Liu, Qinghua ;
Lin, Yue ;
Pei, Jiajing ;
Li, Zhi ;
Jiang, Zhuoli ;
Zhou, Danni ;
Zheng, Lirong ;
Wang, Yu ;
Zhou, Jing ;
Yang, Zhengkun ;
Cao, Rui ;
Sarangi, Ritimukta ;
Sun, Tingting ;
Yang, Xin ;
Zheng, Xusheng ;
Yan, Wensheng ;
Zhuang, Zhongbin ;
Li, Jia ;
Chen, Wenxing ;
Wang, Dingsheng ;
Zhang, Jiatao ;
Li, Yadong .
NATURE COMMUNICATIONS, 2020, 11 (01)
[19]   Aligned sulfur-deficient ZnS1-x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries [J].
Wang, Jiayi ;
Zhao, Yan ;
Li, Gaoran ;
Luo, Dan ;
Liu, Jiabing ;
Zhang, Yongguang ;
Wang, Xin ;
Shui, Lingling ;
Chen, Zhongwei .
NANO ENERGY, 2021, 84
[20]   Atomically Dispersed Fe-Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction [J].
Wang, Mengran ;
Yang, Wenjuan ;
Li, Xinzhe ;
Xu, Yangsen ;
Zheng, Lirong ;
Su, Chenliang ;
Liu, Bin .
ACS ENERGY LETTERS, 2021, 6 (02) :379-386