Midinfrared Spectroscopic Analysis of Aqueous Mixtures Using Artificial- Intelligence-Enhanced Metamaterial Waveguide Sensing Platform

被引:34
作者
Lee, Chengkuo [1 ,2 ,3 ]
Zhou, Jingkai [1 ,2 ]
Zhang, Zixuan [1 ,2 ]
Dong, Bowei [1 ,2 ]
Ren, Zhihao [1 ,2 ]
Liu, Weixin [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[2] Natl Univ Singapore, Ctr Intelligent Sensors & MEMS CISM, Singapore 117608, Singapore
[3] Natl Univ Singapore, NUS Grad Sch, Integrat Sci Engn Programme ISEP, Singapore 119077, Singapore
基金
新加坡国家研究基金会;
关键词
mid-infrared spectroscopy; waveguide sensors; artificial intelligence; metamaterial; mixture analysis; SILICON PHOTONICS; CASCADE LASER; CHIP;
D O I
10.1021/acsnano.2c10163
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As miniaturized solutions, mid-infrared (MIR) waveguide sensors are promising for label-free compositional detection of mixtures leveraging plentiful absorption fingerprints. However, the quantitative analysis of liquid mixtures is still challenging using MIR waveguide sensors, as the absorption spectrum overlaps for multiple organic components accompanied by strong water absorption background. Here, we present an artificial-intelligence-enhanced metamaterial wave guide sensing platform (AIMWSP) for aqueous mixture analysis in the MIR. With the sensitivity-improved metamaterial waveguide and assistance of machine learning, the MIR absorption spectra of a ternary mixture in water can be successfully distinguished and decomposed to single -component spectra for predicting concentration. A classification accuracy of 98.88% for 64 mixing ratios and 92.86% for four concentrations below the limit of detection (972 ppm, based on 3 sigma) with steps of 300 ppm are realized. Besides, the mixture concentration prediction with root-mean-squared error varying from 0.107 vol % to 1.436 vol % is also achieved. Our work indicates the potential of further extending this sensing platform to MIR spectrometer-on-chip aiming for the data analytics of multiple organic components in aqueous environments.
引用
收藏
页码:711 / 724
页数:14
相关论文
共 90 条
[11]   Subwavelength integrated photonics [J].
Cheben, Pavel ;
Halir, Robert ;
Schmid, Jens H. ;
Atwater, Harry A. ;
Smith, David R. .
NATURE, 2018, 560 (7720) :565-572
[12]   MEMS-based metamaterial grating waveguide for tunable optical attenuator and modulator applications [J].
Chen, Peiyu ;
Huang, Weikai ;
Feng, Qiuxiao ;
Liu, Yuwei ;
Lin, Yu-Sheng .
OPTICS AND LASER TECHNOLOGY, 2022, 156
[13]   Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing [J].
Chen, Yu ;
Lin, Hongtao ;
Hu, Juejun ;
Li, Mo .
ACS NANO, 2014, 8 (07) :6955-6961
[14]   On-chip photonic synapse [J].
Cheng, Zengguang ;
Rios, Carlos ;
Pernice, Wolfram H. P. ;
Wright, C. David ;
Bhaskaran, Harish .
SCIENCE ADVANCES, 2017, 3 (09)
[15]  
Dai M., 2022, NAT COMMUN, V13, P1
[16]   Controlling leakage losses in subwavelength grating silicon metamaterial waveguides [J].
Dario Sarmiento-Merenguel, J. ;
Ortega-Monux, Alejandro ;
Fedeli, Jean-Marc ;
Gonzalo Wanguemert-Perez, J. ;
Alonso-Ramos, Carlos ;
Duran-Valdeiglesias, Elena ;
Cheben, Pavel ;
Molina-Fernandez, Inigo ;
Halir, Robert .
OPTICS LETTERS, 2016, 41 (15) :3443-3446
[17]   Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers [J].
Deng, Wenjie ;
Zheng, Zilong ;
Li, Jingzhen ;
Zhou, Rongkun ;
Chen, Xiaoqing ;
Zhang, Dehui ;
Lu, Yue ;
Wang, Chongwu ;
You, Congya ;
Li, Songyu ;
Sun, Ling ;
Wu, Yi ;
Li, Xuhong ;
An, Boxing ;
Liu, Zheng ;
Wang, Qi Jie ;
Duan, Xiangfeng ;
Zhang, Yongzhe .
NATURE COMMUNICATIONS, 2022, 13 (01)
[18]   Biometrics-protected optical communication enabled by deep learning-enhanced triboelectric/photonic synergistic interface [J].
Dong, Bowei ;
Zhang, Zixuan ;
Shi, Qiongfeng ;
Wei, Jingxuan ;
Ma, Yiming ;
Xiao, Zian ;
Lee, Chengkuo .
SCIENCE ADVANCES, 2022, 8 (03)
[19]   Wearable Triboelectric-Human-Machine Interface (THMI) Using Robust Nanophotonic Readout [J].
Dong, Bowei ;
Yang, Yanqin ;
Shi, Qiongfeng ;
Xu, Siyu ;
Sun, Zhongda ;
Zhu, Shiyang ;
Zhang, Zixuan ;
Kwong, Dim-Lee ;
Zhou, Guangya ;
Ang, Kah-Wee ;
Lee, Chengkuo .
ACS NANO, 2020, 14 (07) :8915-8930
[20]   Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection [J].
Etezadi, Dordaneh ;
Warner, John B. ;
Ruggeri, Francesco S. ;
Dietler, Giovanni ;
Lashuel, Hilal A. ;
Altug, Hatice .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e17029-e17029