Midinfrared Spectroscopic Analysis of Aqueous Mixtures Using Artificial- Intelligence-Enhanced Metamaterial Waveguide Sensing Platform

被引:34
作者
Lee, Chengkuo [1 ,2 ,3 ]
Zhou, Jingkai [1 ,2 ]
Zhang, Zixuan [1 ,2 ]
Dong, Bowei [1 ,2 ]
Ren, Zhihao [1 ,2 ]
Liu, Weixin [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[2] Natl Univ Singapore, Ctr Intelligent Sensors & MEMS CISM, Singapore 117608, Singapore
[3] Natl Univ Singapore, NUS Grad Sch, Integrat Sci Engn Programme ISEP, Singapore 119077, Singapore
基金
新加坡国家研究基金会;
关键词
mid-infrared spectroscopy; waveguide sensors; artificial intelligence; metamaterial; mixture analysis; SILICON PHOTONICS; CASCADE LASER; CHIP;
D O I
10.1021/acsnano.2c10163
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As miniaturized solutions, mid-infrared (MIR) waveguide sensors are promising for label-free compositional detection of mixtures leveraging plentiful absorption fingerprints. However, the quantitative analysis of liquid mixtures is still challenging using MIR waveguide sensors, as the absorption spectrum overlaps for multiple organic components accompanied by strong water absorption background. Here, we present an artificial-intelligence-enhanced metamaterial wave guide sensing platform (AIMWSP) for aqueous mixture analysis in the MIR. With the sensitivity-improved metamaterial waveguide and assistance of machine learning, the MIR absorption spectra of a ternary mixture in water can be successfully distinguished and decomposed to single -component spectra for predicting concentration. A classification accuracy of 98.88% for 64 mixing ratios and 92.86% for four concentrations below the limit of detection (972 ppm, based on 3 sigma) with steps of 300 ppm are realized. Besides, the mixture concentration prediction with root-mean-squared error varying from 0.107 vol % to 1.436 vol % is also achieved. Our work indicates the potential of further extending this sensing platform to MIR spectrometer-on-chip aiming for the data analytics of multiple organic components in aqueous environments.
引用
收藏
页码:711 / 724
页数:14
相关论文
共 90 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications [J].
Al-Fuqaha, Ala ;
Guizani, Mohsen ;
Mohammadi, Mehdi ;
Aledhari, Mohammed ;
Ayyash, Moussa .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (04) :2347-2376
[3]   An on-chip photonic deep neural network for image classification [J].
Ashtiani, Farshid ;
Geers, Alexander J. ;
Aflatouni, Firooz .
NATURE, 2022, 606 (7914) :501-+
[4]   Fabrication of Square-Centimeter Plasnnonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement [J].
Bagheri, Shahin ;
Weber, Ksenia ;
Gissibl, Timo ;
Weiss, Thomas ;
Neubrech, Frank ;
Giessen, Harald .
ACS PHOTONICS, 2015, 2 (06) :779-786
[5]   Mid-IR sensing platform for trace analysis in aqueous solutions based on a germanium-on-silicon waveguide chip with a mesoporous silica coating for analyte enrichment [J].
Beneitez, Nuria Teigell ;
Baumgartner, Bettina ;
Missinne, Jeroen ;
Radosavljevic, Sanja ;
Wacht, Dominik ;
Hugger, Stefan ;
Leszcz, Pawel ;
Lendl, Bernard ;
Roelkens, Gunther .
OPTICS EXPRESS, 2020, 28 (18) :27013-27027
[6]   Optical biosensors [J].
Borisov, Sergey M. ;
Wolfbeis, Otto S. .
CHEMICAL REVIEWS, 2008, 108 (02) :423-461
[7]  
Braun T, 2009, NAT NANOTECHNOL, V4, P179, DOI [10.1038/nnano.2008.398, 10.1038/NNANO.2008.398]
[8]   A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips [J].
Carlborg, C. F. ;
Gylfason, K. B. ;
Kazmierczak, A. ;
Dortu, F. ;
Banuls Polo, M. J. ;
Maquieira Catala, A. ;
Kresbach, G. M. ;
Sohlstrom, H. ;
Moh, T. ;
Vivien, L. ;
Popplewell, J. ;
Ronan, G. ;
Barrios, C. A. ;
Stemme, G. ;
van der Wijngaart, W. .
LAB ON A CHIP, 2010, 10 (03) :281-290
[9]   Electrochemical biosensors for pathogen detection [J].
Cesewski, Ellen ;
Johnson, Blake N. .
BIOSENSORS & BIOELECTRONICS, 2020, 159
[10]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)