Effect of current density on membrane degradation under the combined chemical and mechanical stress test in the PEMFCs

被引:21
作者
Ngo, Phi Manh [1 ,3 ]
Karimata, Takahiro [1 ]
Saitou, Tomoko [1 ]
Ito, Kohei [1 ,2 ]
机构
[1] Kyushu Univ, Grad Sch Engn, Dept Hydrogen Energy Syst, 744 Motooka,Nishi Ku, Fukuoka, Fukuoka 8190395, Japan
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2 CNER, 744 Motooka,Nishi Ku, Fukuoka, Fukuoka 8190395, Japan
[3] Univ Danang, Univ Sci & Technol, Fac Heat & Refrigerat Engn, Danang City 550000, Vietnam
关键词
Polymer electrolyte membrane fuel cells; Combined membrane stress tests; Electrochemical measurements; Infrared imaging; Hotspots; Pinholes; HYDROGEN-PEROXIDE; PERFORMANCE; DURABILITY; KINETICS;
D O I
10.1016/j.jpowsour.2022.232446
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study elucidates the effects of current density on membrane degradation under combined mechanical and chemical stress tests. Relative humidity (RH) cycling tests using hydrogen gas and air are conducted on a polymer electrolyte membrane fuel cell based membrane NRE211 at the open circuit voltage (OCV), 0.05 and 0.3 Acm(-2) conditions. The different current density conditions result in different in-plane membrane stresses and H2O2 formation rates during the test. After every 200 RH cycles, membrane integrity is assessed via the hydrogen crossover rate and OCV. Furthermore, catalytic combustion is analyzed during OCV measurement using a thermal imaging method employing high-transmittance glass at the cathode side. The membrane failed after 1600, 1800, and 2200 RH cycles under the OCV condition, 0.05 of 0.3 Acm(-2), respectively. The vigorous membrane degradation under OCV conditions can be attributed to higher mechanical stress and H2O2 formation rate. Hotspots created owing to the combustion between the crossover hydrogen and air were successfully captured, with a maximum temperature rise ranging from 15 to 16 degrees C compared with a given cell temperature of 80 degrees C. Moreover, a post-mortem analysis (SEM imaging) revealed the presence of pinholes, through-membrane cracks, and membrane thinning at the hotspot locations.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Use of mechanical tests to predict durability of polymer fuel cell membranes under humidity cycling [J].
Aindow, T. T. ;
O'Neill, J. .
JOURNAL OF POWER SOURCES, 2011, 196 (08) :3851-3854
[2]   Developments in fuel cell technologies in the transport sector [J].
Alaswad, A. ;
Baroutaji, A. ;
Achour, H. ;
Carton, J. ;
Al Makky, Ahmed ;
Olabi, A. G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (37) :16499-16508
[3]   Decay in Mechanical Properties of Catalyst Coated Membranes Subjected to Combined Chemical and Mechanical Membrane Degradation [J].
Alavijeh, A. Sadeghi ;
Goulet, M. -A. ;
Khorasany, R. M. H. ;
Ghataurah, J. ;
Lim, C. ;
Lauritzen, M. ;
Kjeang, E. ;
Wang, G. G. ;
Rajapakse, R. K. N. D. .
FUEL CELLS, 2015, 15 (01) :204-213
[4]   Microstructural and Mechanical Characterization of Catalyst Coated Membranes Subjected to In Situ Hygrothermal Fatigue [J].
Alavijeh, Alireza Sadeghi ;
Khorasany, Ramin M. H. ;
Nunn, Zachary ;
Habisch, Aronne ;
Lauritzen, Michael ;
Rogers, Erin ;
Wang, G. Gary ;
Kjeang, Erik .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :F1461-F1469
[5]  
[Anonymous], 2020, HYDR EC OUTL
[6]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[7]   New roads and challenges for fuel cells in heavy-duty transportation [J].
Cullen, David A. ;
Neyerlin, K. C. ;
Ahluwalia, Rajesh K. ;
Mukundan, Rangachary ;
More, Karren L. ;
Borup, Rodney L. ;
Weber, Adam Z. ;
Myers, Deborah J. ;
Kusoglu, Ahmet .
NATURE ENERGY, 2021, 6 (05) :462-474
[8]   KINETICS OF OXIDATION OF HYDROGEN PEROXIDE BY CERIUM(IV) [J].
CZAPSKI, G ;
BIELSKI, BHJ ;
SUTIN, N .
JOURNAL OF PHYSICAL CHEMISTRY, 1963, 67 (01) :201-&
[9]  
Damron D.L., 2016, IMPROVED CHARACTERIZ, DOI [10.14288/1.0228789, DOI 10.14288/1.0228789]
[10]  
Fuel cell technical team roadmap, 2017, US DRIV RES INN VEH