Damage evolution and failure mechanism of asymmetric composite laminates under low-velocity impact and compression after impact

被引:25
|
作者
Zou, Jianchao [1 ]
Lei, Zhenkun [1 ]
Bai, Ruixiang [1 ]
Liu, Da [1 ]
Liu, Hui [1 ]
Huang, Xiaodi [1 ]
Yan, Cheng [2 ]
机构
[1] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
[2] Queensland Univ Technol QUT, Sch Mech Med & Proc Engn, Brisbane, Qld 4001, Australia
基金
中国国家自然科学基金;
关键词
CAI; Damage evolution; Failure mechanism; Asymmetric composite laminate; 3D-DIC; Ultrasonic scanning; COHESIVE ZONE LENGTH; FRACTURE ANGLE; CAI BEHAVIOR; TESTS; SIMULATION; RESISTANCE; TOLERANCE; ALGORITHM; CRITERION; EFFICIENT;
D O I
10.1016/j.tws.2022.110177
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The damage mechanisms of the balanced symmetrical laminates under low-velocity impact (LVI) and com-pression after impact (CAI) loading conditions are not fully applicable to composite stiffened panels. However, studies on LVI and CAI damage evolution and failure mechanism for asymmetric composite laminates are very rare, which poses challenges to the theoretical study, strength prediction, and application of composite structures, and increases the risk of sudden failure under load. In this study, the damage evolution and failure mechanisms of asymmetric composite laminates under LVI and CAI loading conditions were studied experimentally and numerically. Ultrasonic phased array C-scan technique was used to analyze damage state, damage size, and delamination damage induced by LVI under different impact energies in impact tests. Moreover, a three-dimensional digital image correlation (3D-DIC) technique was employed to monitor the evolution of full-field displacement and strain in the asymmetric composite laminates during the CAI tests. A three-dimensional damage model considering the interaction among the interlaminar delamination damage, intralaminar matrix damage, and intralaminar fiber damage was proposed, and an interface-based cohesive behavior embedded framework in ABAQUS/Explicit was used to define and capture the interlaminar damage. The damage initiation, evolution, and propagation behaviors of different damage modes were simulated to study the complex damage and failure mechanisms of the asymmetric laminates in the LVI and CAI processes. The relationships among the different impact energies and the impact damage modes, delamination morphologies, and compression damage propagation and failure modes were discussed.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A model of low-velocity impact damage of composite plates subjected to Compression-After-Impact (CAI) testing
    Rozylo, P.
    Debski, H.
    Kubiak, T.
    COMPOSITE STRUCTURES, 2017, 181 : 158 - 170
  • [42] Comprehensive investigation on modelling of low-velocity impact damage response of composite laminates- Experimental correlation and assessment
    Zheng, Kaidong
    Cao, Dongfeng
    Hu, Haixiao
    Chen, Hongda
    Cai, Wei
    Li, Shuxin
    COMPOSITE STRUCTURES, 2024, 345
  • [43] Experimental and Simulation Study on Failure of Thermoplastic Carbon Fiber Composite Laminates under Low-Velocity Impact
    Yang, Lei
    Huang, Xiaolin
    Liao, Zhenhao
    Wei, Zongyou
    Zou, Jianchao
    POLYMERS, 2024, 16 (18)
  • [44] Investigation of damage to thick composite laminates under low-velocity impact and frequency-sweep vibration loading conditions
    Duan, Miaomiao
    Yue, Zhufeng
    Song, Qianguang
    ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (10)
  • [45] Numerical investigation of the low-velocity impact damage resistance and tolerance of composite laminates with preloads
    Zhang, Di
    Zhang, Wenxin
    Zhou, Jin
    Zheng, Xitao
    Wang, Jizhen
    Liu, Haibao
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 142
  • [46] Low-velocity impact response and damage simulation of fiber/magnesium alloy composite laminates
    Zhou X.
    Li K.
    Chen C.
    Chen X.
    2018, Chinese Vibration Engineering Society (37): : 1 - 9
  • [47] Low-velocity impact behaviour of composite laminates-a review
    Austin, Alen
    Priyadarsini, R. S.
    EMERGING TRENDS IN ENGINEERING, SCIENCE AND TECHNOLOGY FOR SOCIETY, ENERGY AND ENVIRONMENT, 2018, : 59 - 65
  • [48] Effect of low-velocity impact damage location on the stability and post-critical state of composite columns under compression
    Debski, H.
    Rozylo, P.
    Gliszczynski, A.
    COMPOSITE STRUCTURES, 2018, 184 : 883 - 893
  • [49] Experimental and numerical investigation on the compression after high-velocity impact behavior of composite laminates
    Zhu, Xinying
    Chen, Wei
    Liu, Lulu
    Luo, Gang
    Zhao, Zhenhua
    ENGINEERING FAILURE ANALYSIS, 2024, 159
  • [50] In-plane compression response of woven CFRP composite after low-velocity impact: Modelling and experiment
    Yang, Bin
    Chen, Yuan
    Lee, Juhyeong
    Fu, Kunkun
    Li, Yan
    THIN-WALLED STRUCTURES, 2021, 158