Thermal Runaway of Lithium-Ion Batteries Employing Flame-Retardant Fluorinated Electrolytes

被引:46
作者
Hou, Junxian [1 ]
Wang, Li [2 ]
Feng, Xuning [1 ]
Terada, Junpei [3 ]
Lu, Languang [1 ]
Yamazaki, Shigeaki [3 ]
Su, Anyu [1 ]
Kuwajima, Yoshiko [3 ]
Chen, Yongjiang [4 ]
Hidaka, Tomoya [3 ]
He, Xiangming [2 ]
Wang, Hewu [1 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[3] Daikin Ind Ltd, 1-1 Nishi Hitotsuya, Settsu, Osaka 5668585, Japan
[4] Sichuan New Energy Vehicle Innovat Ctr, Yibin 644002, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
battery safety; flame retardance; fluorinated electrolytes; lithium-ion battery; thermal runaway; CARBONATE; MECHANISM; CATHODES; ETHER;
D O I
10.1002/eem2.12297
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fluorinated electrolytes possess good antioxidant capacity that provides high compatibility to high-voltage cathode and flame retardance; thus, they are considered as a promising solution for advanced lithium-ion batteries carrying both high-energy density and high safety. Moreover, the fluorinated electrolytes are widely used to form stable electrolyte interphase, due to their chemical reactivity with lithiated graphite or lithium. However, the influence of this reactivity on the thermal safety of batteries is seldom discussed. Herein, we demonstrate that the flame-retardant fluorinated electrolytes help to reduce the flammability, while the lithium-ion batteries with flame-retardant fluorinated electrolytes still undergo thermal runaway and disclose their different thermal runaway pathway from that of battery with conventional electrolyte. The reduction in fluorinated components (e.g., LiPF6 and fluoroethylene carbonate (FEC)) by fully lithiated graphite accounts for a significant heat release during battery thermal runaway. The 13% of total heat is sufficient to trigger the chain reactions during battery thermal runaway. This study deepens the understanding of the thermal runaway mechanism of lithium-ion batteries employing flame-retardant fluorinated electrolytes, providing guidance on the concept of electrolyte design for safer lithium-ion batteries.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Bridging role of ethyl methyl carbonate in fluorinated electrolyte on ionic transport and phase stability for lithium-ion batteries [J].
Bezabh, Hailemariam Kassa ;
Chiu, Shuo-Feng ;
Hagos, Teklay Mezgebe ;
Tsai, Meng-Che ;
Nikodimos, Yosef ;
Redda, Haylay Ghidey ;
Su, Wei-Nien ;
Hwang, Bing Joe .
JOURNAL OF POWER SOURCES, 2021, 494
[2]   The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium [J].
Chen, Rusong ;
Nolan, Adelaide M. ;
Lu, Jiaze ;
Wang, Junyang ;
Yu, Xiqian ;
Mo, Yifei ;
Chen, Liquan ;
Huang, Xuejie ;
Li, Hong .
JOULE, 2020, 4 (04) :812-821
[3]   Nonflammable organic electrolytes for high-safety lithium-ion batteries [J].
Deng, Kuirong ;
Zeng, Qingguang ;
Wang, Da ;
Liu, Zheng ;
Wang, Guangxia ;
Qiu, Zhenping ;
Zhang, Yangfan ;
Xiao, Min ;
Meng, Yuezhong .
ENERGY STORAGE MATERIALS, 2020, 32 (32) :425-447
[4]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+
[5]   Mitigating Thermal Runaway of Lithium-Ion Batteries [J].
Feng, Xuning ;
Ren, Dongsheng ;
He, Xiangming ;
Ouyang, Minggao .
JOULE, 2020, 4 (04) :743-770
[6]   Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database [J].
Feng, Xuning ;
Zheng, Siqi ;
Ren, Dongsheng ;
He, Xiangming ;
Wang, Li ;
Cui, Hao ;
Liu, Xiang ;
Jin, Changyong ;
Zhang, Fangshu ;
Xu, Chengshan ;
Hsu, Hungjen ;
Gao, Shang ;
Chen, Tianyu ;
Li, Yalun ;
Wang, Tianze ;
Wang, Hao ;
Li, Maogang ;
Ouyang, Minggao .
APPLIED ENERGY, 2019, 246 :53-64
[7]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[8]   An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter [J].
Fu, Yangyang ;
Lu, Song ;
Li, Kaiyuan ;
Liu, Changchen ;
Cheng, Xudong ;
Zhang, Heping .
JOURNAL OF POWER SOURCES, 2015, 273 :216-222
[9]   Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries [J].
Gong, Jinqiu ;
Wang, Qingsong ;
Sun, Jinhua .
THERMOCHIMICA ACTA, 2017, 655 :176-180
[10]   An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation [J].
Holoubek, John ;
Yu, Mingyu ;
Yu, Sicen ;
Li, Minqian ;
Wu, Zhaohui ;
Xia, Dawei ;
Bhaladhare, Pranjal ;
Gonzalez, Matthew S. ;
Pascal, Tod A. ;
Liu, Ping ;
Chen, Zheng .
ACS ENERGY LETTERS, 2020, 5 (05) :1438-1447