RAKOTCH TYPE EXTENSION OF DARBO'S FIXED POINT THEOREM AND AN APPLICATION

被引:0
作者
Gencturk, Ilker [1 ]
Erduran, Ali [1 ]
Altun, Ishak [1 ]
机构
[1] Kirikkale Univ, Fac Engn & Nat Sci, Dept Math, Kirikkale, Turkiye
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2024年 / 86卷 / 01期
关键词
fixed point; measure of noncompactness; functional equation; NONCOMPACTNESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a new extension of Darbo's fixed point theorem inspired by Rakotch's contraction. We also provide the alternative version of Leray-Schauder type of our new result. In order to demonstrate the applicability of our theoretical result, we present an existence theorem based on a functional equation. Finally, we provide an illustration of our existence theorem.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 12 条
[1]   FIXED POINT THEOREMS FOR MEIR-KEELER CONDENSING OPERATORS VIA MEASURE OF NONCOMPACTNESS [J].
Aghajani, A. ;
Mursaleen, M. ;
Haghighi, A. Shole .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (03) :552-566
[2]   Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces [J].
Aghajani, Asadollah ;
Pourhadi, Ehsan ;
Trujillo, Juan J. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) :962-977
[3]   Some generalizations of Darbo fixed point theorem and applications [J].
Aghajani, Asadollah ;
Banas, Jozef ;
Sabzali, Navid .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (02) :345-358
[4]   An application of a measure of noncompactness in the study of asymptotic stability [J].
Banas, J ;
Rzepka, B .
APPLIED MATHEMATICS LETTERS, 2003, 16 (01) :1-6
[5]   MEASURES OF NONCOMPACTNESS AND ASYMPTOTIC STABILITY OF SOLUTIONS OF A QUADRATIC HAMMERSTEIN INTEGRAL EQUATION [J].
Banas, Jozef ;
O'Regan, Donal ;
Agarwal, Ravi P. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (06) :1769-1792
[6]  
Darbo G., 1995, Rend Sem Math. Univ. Padova., V24, P84
[7]   Measures of noncompactness in the space of regulated functions on an unbounded interval [J].
Dudek, Szymon ;
Olszowy, Leszek .
ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (04)
[8]   A New Survey of Measures of Noncompactness and Their Applications [J].
Gabeleh, Moosa ;
Malkowsky, Eberhard ;
Mursaleen, Mohammad ;
Rakocevic, Vladimir .
AXIOMS, 2022, 11 (06)
[9]   Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness [J].
Garcia-Falset, J. ;
Latrach, K. ;
Moreno-Galvez, E. ;
Taoudi, M. -A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (05) :3436-3452
[10]  
KURATOWSKI C, 1930, FUND MATH, V15, P301, DOI DOI 10.4064/FM-15-1-301-309