Unified and Tensorized Incomplete Multi-View Kernel Subspace Clustering

被引:5
|
作者
Zhang, Guang-Yu [1 ]
Huang, Dong [1 ]
Wang, Chang-Dong [2 ,3 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
[2] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[3] Guangdong Prov Key Lab Intellectual Property & Big, Guangzhou 510665, Peoples R China
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 02期
关键词
Tensors; Kernel; Correlation; Computational intelligence; Topology; Discrete Fourier transforms; Working environment noise; Data clustering; incomplete multi-view clustering; tensorized kernel subspace clustering; one-step framework;
D O I
10.1109/TETCI.2024.3353576
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete multi-view clustering (IMC) has recently received widespread attention in the field of clustering analysis. In spite of the great success, we observe that the current IMC approaches are still faced with three common demerits. First, they mostly fail to recover the inherent (especially nonlinear) subspace structure during incomplete clustering procedure. Second, these approaches tend to design the objective function by some specific matrix norms, yet often overlook the high-level correlation embedded in heterogeneous views. Third, many of them follow a two-stage framework, which inevitably leads to the sub-optimal clustering result due to the lack of the ability of joint optimization. To overcome these demerits, we develop a novel approach termed Unified and Tensorized Incomplete Multi-view Kernel Subspace Clustering (UT-IMKSC) in this paper. Specifically, a kernelized incomplete subspace clustering framework is formulated to exploit the inherent subspace structure from multiple views. In this framework, we aim to impute the incomplete kernels and perform incomplete subspace clustering simultaneously, upon which the low-rank tensor representations as well as their affinity matrix can be seamlessly achieved in a one-step manner. This unified formulation enables our approach to recover the latent relationship among observed and unobserved samples, while capturing the high-level correlation for strengthened subspace clustering. To the best of our knowledge, our approach is the first attempt to formulate incomplete multi-view kernel subspace clustering from unified and tensorized perspectives. Extensive experiments are conducted on various incomplete multi-view datasets, which have demonstrated the superiority of our approach over the state-of-the-art.
引用
收藏
页码:1550 / 1566
页数:17
相关论文
共 50 条
  • [31] Locality adaptive incomplete multi-view subspace clusteringLocality adaptive incomplete multi-view subspace clusteringG. Zhong et al.
    Guo Zhong
    Min Zhong
    Shengqi Wu
    Yuzhi Liang
    Pengfei Song
    Shixun Lin
    Xiuyun Zhu
    Data Mining and Knowledge Discovery, 2025, 39 (4)
  • [32] Incomplete multi-view clustering based on hypergraph
    Chen, Jin
    Xu, Huafu
    Xue, Jingjing
    Gao, Quanxue
    Deng, Cheng
    Lv, Ziyu
    INFORMATION FUSION, 2025, 117
  • [33] Multi-View Spectral Clustering With Incomplete Graphs
    Zhuge, Wenzhang
    Luo, Tingjin
    Tao, Hong
    Hou, Chenping
    Yi, Dongyun
    IEEE ACCESS, 2020, 8 : 99820 - 99831
  • [34] Data Completion-Guided Unified Graph Learning for Incomplete Multi-View Clustering
    Liang, Tianhai
    Shen, Qiangqiang
    Wang, Shuqin
    Chen, Yongyong
    Zhang, Guokai
    Chen, Junxin
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (08)
  • [35] Incomplete Multi-View Clustering With Reconstructed Views
    Yin, Jun
    Sun, Shiliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2671 - 2682
  • [36] Deep spectral clustering network for incomplete multi-view clustering
    Li, Ao
    Mei, Sanlin
    Feng, Cong
    Gao, Tianyu
    Huang, Hai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [37] Dynamic Ensemble Learning With Multi-View Kernel Collaborative Subspace Clustering for Hyperspectral Image Classification
    Lu, Hongliang
    Su, Hongjun
    Hu, Jun
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2681 - 2695
  • [38] Jointly Learning Kernel Representation Tensor and Affinity Matrix for Multi-View Clustering
    Chen, Yongyong
    Xiao, Xiaolin
    Zhou, Yicong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (08) : 1985 - 1997
  • [39] Consensus guided incomplete multi-view spectral clustering
    Wen, Jie
    Sun, Huijie
    Fei, Lunke
    Li, Jinxing
    Zhang, Zheng
    Zhang, Bob
    NEURAL NETWORKS, 2021, 133 : 207 - 219
  • [40] Auto-Weighted Incomplete Multi-View Clustering
    Deng, Wanyu
    Liu, Lixia
    Li, Jianqiang
    Lin, Yijun
    IEEE ACCESS, 2020, 8 : 138752 - 138762