Intellectual Property Protection of Deep-Learning Systems via Hardware/Software Co-Design

被引:1
|
作者
Chen, Huili [1 ,5 ]
Fu, Cheng [2 ]
Rouhani, Bita Darvish [3 ]
Zhao, Jishen [2 ]
Koushanfar, Farinaz [4 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Comp Sci & Engn Dept, La Jolla, CA 92093 USA
[3] Microsoft, Redmond, WA 98052 USA
[4] Univ Calif San Diego, Elect & Comp Engn, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
Hardware; Fingerprint recognition; Security; Watermarking; IP networks; Computational modeling; Performance evaluation; Intellectual property protection; Deep learning hardware; Attestation; Digital fingerprinting;
D O I
10.1109/MDAT.2023.3303435
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Editor's notes: This article protects deep learning models by leveraging hardware device-specific model fingerprinting and trusted execution environment. - Gang Qu, University of Maryland, USA © 2013 IEEE.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 39 条
  • [1] A Hardware/Software Co-Design Vision for Deep Learning at the Edge
    Ponzina, Flavio
    Machetti, Simone
    Rios, Marco
    Denkinger, Benoit Walter
    Levisse, Alexandre
    Ansaloni, Giovanni
    Peon-Quiros, Miguel
    Atienza, David
    IEEE MICRO, 2022, 42 (06) : 48 - 54
  • [2] Cerebras Architecture Deep Dive: First Look Inside the Hardware/Software Co-Design for Deep Learning
    Lie, Sean
    IEEE MICRO, 2023, 43 (03) : 18 - 30
  • [3] Deep Model Intellectual Property Protection via Deep Watermarking
    Zhang, Jie
    Chen, Dongdong
    Liao, Jing
    Zhang, Weiming
    Feng, Huamin
    Hua, Gang
    Yu, Nenghai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4005 - 4020
  • [4] Conceptual Model of Hardware & Software Co-design for Multicore Systems on Chip
    Ruchkin, Vladimir
    Soldatov, Grigory
    Koryachko, Alexei
    Kostrov, Boris
    Ruchkina, Ekaterina
    2020 9TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2020, : 368 - 371
  • [5] Co-Z ECC scalar multiplications for hardware, software and hardware-software co-design on embedded systems
    Baldwin, Brian
    Goundar, Raveen R.
    Hamilton, Mark
    Marnane, William P.
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2012, 2 (04) : 221 - 240
  • [6] A Practical Multiobjective Learning Framework for Optimal Hardware–Software Co-Design of Control-on-a-Chip Systems
    Chan, Kimberly J.
    Paulson, Joel A.
    Mesbah, Ali
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024, 32 (06) : 2178 - 2193
  • [7] Systemization of Knowledge: Robust Deep Learning using Hardware-software co-design in Centralized and Federated Settings
    Zhang, Ruisi
    Hussain, Shehzeen
    Chen, Huili
    Javaheripi, Mojan
    Koushanfar, Farinaz
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2023, 28 (06)
  • [8] VLSI realization of learning vector quantization with hardware/software co-design for different applications
    An, Fengwei
    Akazawa, Toshinobu
    Yamasaki, Shogo
    Chen, Lei
    Mattausch, Hans Juergen
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (04)
  • [9] Hardware/software co-design for RSVP-TE MPLS
    Peterkin, Raymond
    Ionescu, Dan
    2006 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-5, 2006, : 2227 - +
  • [10] Hardware-Software Co-Design Framework for Data Encryption in Image Processing Systems for the Internet of Things Environment
    Lata, Kusum
    Chhabra, Surbhi
    Saini, Sandeep
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2022, 11 (04) : 92 - 97