Equivalent-circuit model that quantitatively describes domain-wall conductivity in ferroelectric LiNbO3

被引:6
|
作者
Zahn, Manuel [1 ,2 ]
Beyreuther, Elke [1 ]
Kiseleva, Iuliia [1 ]
Lotfy, Ahmed Samir [3 ]
McCluskey, Conor J. [4 ]
Maguire, Jesi R. [4 ]
Suna, Ahmet [4 ]
Ruesing, Michael [1 ,5 ]
Gregg, J. Marty [4 ]
Eng, Lukas M. [1 ,6 ]
机构
[1] Tech Univ Dresden, Inst Appl Phys, D-01062 Dresden, Germany
[2] Univ Augsburg, Ctr Elect Correlat & Magnetism, Expt Phys 5, D-86159 Augsburg, Germany
[3] Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich, Switzerland
[4] Queens Univ, Ctr Quantum Mat & Technol, Sch Math & Phys, Belfast, North Ireland
[5] Paderborn Univ, Inst Photon Quantum Syst PhoQS, Integrated Quantum Opt, D-33098 Paderborn, Germany
[6] Tech Univ Dresden, Ctqmat Dresden Wurzburg Cluster Excellence EXC 214, D-01062 Dresden, Germany
关键词
Domain walls;
D O I
10.1103/PhysRevApplied.21.024007
中图分类号
O59 [应用物理学];
学科分类号
摘要
Ferroelectric domain wall (DW) conductivity (DWC) can be attributed to two separate mechanisms: (a) the injection/ejection of charge carriers across the Schottky barrier formed at the (metal-)electrode-DW junction and (b) the transport of those charge carriers along the DW. Current -voltage (I -U) characteristics, recorded at variable temperatures from LiNbO3 (LNO) DWs, are clearly able to differentiate between these two contributions. Practically, they allow us to directly quantify the physical parameters relevant to the two mechanisms (a) and (b) mentioned above. These are, for example, the resistance of the DW, the saturation current, the ideality factor, and the Schottky barrier height of the electrode-DW junction. Furthermore, the activation energies needed to initiate the thermally activated electronic transport along the DWs can be extracted. In addition, we show that electronic transport along LNO DWs can be elegantly viewed and interpreted in an adapted semiconductor picture based on a double -diode, double -resistor equivalentcircuit model, the R2D2 model. Finally, our R2D2 model was checked for its universality by successfully fitting the I -U curves of not only z -cut LNO bulk DWs, but equally of z -cut thin-film LNO DWs, and of x -cut thin-film DWs as reported in literature.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dipole-Tunneling Model from Asymmetric Domain-Wall Conductivity in LiNbO3 Single Crystals
    Xiao, S. Y.
    Kaempfe, T.
    Jin, Y. M.
    Haussmann, A.
    Lu, X. M.
    Eng, L. M.
    PHYSICAL REVIEW APPLIED, 2018, 10 (03):
  • [2] Depinning of the ferroelectric domain wall in congruent LiNbO3
    Lee, Donghwa
    Gopalan, Venkatraman
    Phillpot, Simon R.
    APPLIED PHYSICS LETTERS, 2016, 109 (08)
  • [3] Cryogenic Ferroelectric LiNbO3 Domain Wall Memory
    Hu, Di
    Shen, Bo Wen
    Sun, Jie
    Li, Yi Ming
    Jiang, An Quan
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (03) : 380 - 383
  • [4] Shape of ferroelectric domains in LiNbO3 and LiTaO3 from defect/domain-wall interactions
    Lee, Donghwa
    Xu, Haixuan
    Dierolf, Volkmar
    Gopalan, Venkatraman
    Phillpot, Simon R.
    APPLIED PHYSICS LETTERS, 2011, 98 (09)
  • [5] Compact equivalent-circuit model of LiNbO3 modulator for passive millimeter wave imaging system
    Qian Feng-chen
    Xie Xiao-ping
    Ye Ya-lin
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: SPACE EXPLORATION TECHNOLOGIES AND APPLICATIONS, 2011, 8196
  • [6] High-Power LiNbO3 Domain-Wall Nanodevices
    Sun, Jie
    Li, Yiming
    Zhang, Boyang
    Jiang, Anquan
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (06) : 8691 - 8698
  • [7] Low-Voltage Domain-Wall LiNbO3 Memristors
    Chaudhary, P.
    Lu, H.
    Lipatov, A.
    Ahmadi, Z.
    McConville, J. P., V
    Sokolov, A.
    Shield, J. E.
    Sinitskii, A.
    Gregg, J. M.
    Gruverman, A.
    NANO LETTERS, 2020, 20 (08) : 5873 - 5878
  • [8] Conductive Domain-Wall Temperature Sensors of LiNbO3 Ferroelectric Single-Crystal Thin Films
    Geng, Wenping
    He, Jinlong
    Qiao, Xiaojun
    Niu, Liya
    Zhao, Caiqin
    Xue, Gang
    Bi, Kaixi
    Mei, Linyu
    Wang, Xiangjian
    Chou, Xiujian
    IEEE ELECTRON DEVICE LETTERS, 2021, 42 (12) : 1841 - 1844
  • [9] Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory
    Zhang, Wen Jie
    Shen, Bo Wen
    Fan, Hao Chen
    Hu, Di
    Jiang, An Quan
    Jiang, Jun
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (03) : 420 - 423
  • [10] Sub 20 nm-Node LiNbO3 Domain-Wall Memory
    Lian, Jianwei
    Chai, Xiaojie
    Wang, Chao
    Hu, Xiaobing
    Jiang, Jun
    Jiang, Anquan
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (07)