Advancements and Challenges in High-Capacity Ni-Rich Cathode Materials for Lithium-Ion Batteries

被引:9
|
作者
Ahangari, Mehdi [1 ]
Szalai, Benedek [1 ]
Lujan, Josue [1 ]
Zhou, Meng [1 ]
Luo, Hongmei [1 ]
机构
[1] New Mexico State Univ, Dept Chem & Mat Engn, Las Cruces, NM 88003 USA
基金
美国国家科学基金会;
关键词
Ni-rich cathode; surface modification; elemental doping; concentration gradient; TRANSITION-METAL DISSOLUTION; LAYERED OXIDE CATHODE; ENHANCED ELECTROCHEMICAL PERFORMANCE; HIGH CUTOFF VOLTAGE; HIGH-ENERGY; CYCLING STABILITY; LINI0.8CO0.1MN0.1O2; CATHODE; THERMAL-STABILITY; LINI0.6CO0.2MN0.2O2; STRUCTURAL STABILITY;
D O I
10.3390/ma17040801
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nowadays, lithium-ion batteries are undoubtedly known as the most promising rechargeable batteries. However, these batteries face some big challenges, like not having enough energy and not lasting long enough, that should be addressed. Ternary Ni-rich Li[NixCoyMnz]O2 and Li[NixCoyAlz]O2 cathode materials stand as the ideal candidate for a cathode active material to achieve high capacity and energy density, low manufacturing cost, and high operating voltage. However, capacity gain from Ni enrichment is nullified by the concurrent fast capacity fading because of issues such as gas evolution, microcracks propagation and pulverization, phase transition, electrolyte decomposition, cation mixing, and dissolution of transition metals at high operating voltage, which hinders their commercialization. In order to tackle these problems, researchers conducted many strategies, including elemental doping, surface coating, and particle engineering. This review paper mainly talks about origins of problems and their mechanisms leading to electrochemical performance deterioration for Ni-rich cathode materials and modification approaches to address the problems.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] La-doped single-crystal Li-rich materials as high-capacity cathode materials for lithium-ion batteries
    Lv, Rongguan
    Wang, Chao
    Wang, Meng
    IONICS, 2025, : 4083 - 4095
  • [32] High-Rate Structure-Gradient Ni-Rich Cathode Material for Lithium-Ion Batteries
    Su, Yuefeng
    Chen, Gang
    Chen, Lai
    Lu, Yun
    Zhang, Qiyu
    Lv, Zhao
    Li, Cong
    Li, Linwei
    Liu, Na
    Tan, Guoqiang
    Bao, Liying
    Chen, Shi
    Wu, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) : 36697 - 36704
  • [33] Opportunities and Challenges of Layered Lithium-Rich Manganese-Based Cathode Materials for High Energy Density Lithium-Ion Batteries
    Kou, Pengzu
    Zhang, Zhigui
    Wang, Zhiyuan
    Zheng, Runguo
    Liu, Yanguo
    Lv, Fei
    Xu, Ning
    ENERGY & FUELS, 2023, 37 (23) : 18243 - 18265
  • [34] Single-crystal structure helps enhance the thermal performance of Ni-rich layered cathode materials for lithium-ion batteries
    Kong, Xiangbang
    Zhang, Yige
    Li, Jiyang
    Yang, Huiya
    Dai, Pengpeng
    Zeng, Jing
    Zhao, Jinbao
    CHEMICAL ENGINEERING JOURNAL, 2022, 434
  • [35] A review of high-capacity lithium-rich manganese-based cathode materials for a new generation of lithium batteries
    Lin, Yi
    Li, You
    Tang, Mulan
    Zhan, Lulu
    Zhai, Yuxin
    Chen, Weiming
    Zhou, Mengxue
    Ji, Yanan
    Wang, Peike
    INORGANICA CHIMICA ACTA, 2024, 572
  • [36] Enhanced Electrochemical Performances of Ni-rich Cathode Materials for Lithium Ion Batteries by Mixed Coating Layers
    Wang, Zunzhi
    She, Shengxian
    Lv, Mengyao
    Yuan, Xujun
    Sun, Hui
    Zhao, Jun
    Yu, Jian
    Yan, Xufeng
    ELECTROCHEMISTRY, 2021, 89 (05) : 461 - 466
  • [37] In-depth understanding of the deterioration mechanism and modification engineering of high energy density Ni-rich layered lithium transition-metal oxide cathode for lithium-ion batteries
    Hou, Lijuan
    Liu, Qi
    Chen, Xinyuan
    Yang, Qiang
    Mu, Daobin
    Li, Li
    Wu, Feng
    Chen, Renjie
    CHEMICAL ENGINEERING JOURNAL, 2023, 465
  • [38] Key Parameter Optimization for the Continuous Synthesis of Ni-Rich Ni-Co-Al Cathode Materials for Lithium-Ion Batteries
    Xu, Chunliu
    Yang, Wen
    Xiang, Wei
    Wu, Zhenguo
    Song, Yang
    Wang, Gongke
    Liu, Yuxia
    Yan, Hua
    Zhang, Bin
    Zhong, Benhe
    Guo, Xiaodong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (52) : 22549 - 22558
  • [39] Design of pyrite/carbon nanospheres as high-capacity cathode for lithium-ion batteries
    Xiong, Qinqin
    Teng, Xiaojing
    Lou, Jingjing
    Pan, Guoxiang
    Xia, Xinhui
    Chi, Hongzhong
    Lu, Xiaoxiao
    Yang, Tao
    Ji, Zhenguo
    JOURNAL OF ENERGY CHEMISTRY, 2020, 40 : 1 - 6
  • [40] Design of pyrite/carbon nanospheres as high-capacity cathode for lithium-ion batteries
    Qinqin Xiong
    Xiaojing Teng
    Jingjing Lou
    Guoxiang Pan
    Xinhui Xia
    Hongzhong Chi
    Xiaoxiao Lu
    Tao Yang
    Zhenguo Ji
    Journal of Energy Chemistry , 2020, (01) : 1 - 6