C@SnS2 core-shell 0D/2D nanocomposite with excellent electrochemical performance as lithium-ion battery anode

被引:2
作者
Jin, Changqing [1 ]
Wei, Yongxing [1 ]
Nan, Ruihua [1 ]
Jian, Zengyun [1 ]
Ding, Qingping [2 ,3 ]
机构
[1] Xian Technol Univ, Sch Mat & Chem Engn, Shaanxi Key Lab Optoelect Funct Mat & Devices, Xian 710021, Peoples R China
[2] Iowa State Univ, US DOE, Ames Natl Lab, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Anode material; SnS2; Heterojunction; Carbon; HIGH REVERSIBLE CAPACITY; SNS2; NANOSHEETS; SNS2/GRAPHENE HYBRID; GRAPHENE; MICROSPHERES; COMPOSITES;
D O I
10.1016/j.electacta.2023.143747
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
C@SnS2 core -shell 0D/2D nanocomposite was successfully prepared by a one-step hydrothermal method. The SnS2 nanosheets were heterogeneously nucleated and grown on the surface of carbon spheres. As an anode for lithium -ion batteries, the electrochemical performance of the C@SnS2 composite outperforms that of SnS2 nanoflowers. After 100 cycles, the reversible discharge specific capacity reaches an impressive value of 802 mAh g-1 at a current density of 100 mA g-1. Even after 600 cycles, the discharge specific capacity remains a value of 442 mAh g-1, under a high current density of 1 A g-1. This remarkable lithium -ion storage performance can be attributed to the unique core -shell nanostructure and the synergy between SnS2 nanosheets and carbon spheres. This study advances our understanding of the vital role of carbon in fabricating nano-heterojunction or composite electrodes and provides a feasible route to significantly improve the electrochemical properties of SnS2 and other metal sulfides.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Electrochemical performance of α-MoO3-In2O3 core-shell nanorods as anode materials for lithium-ion batteries [J].
Wang, Qiang ;
Sun, Jing ;
Wang, Qi ;
Zhang, De-an ;
Xing, Lili ;
Xue, Xinyu .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) :5083-5091
[32]   Sb2O4 @PPy core-shell nanospheres as anode materials for lithium-ion storage [J].
Jiang, Lei ;
Yin, Weihao ;
He, Changjian ;
Luo, Tingting ;
Rui, Yichuan ;
Tang, Bohejin .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 644
[33]   Preparation and enhanced lithium-ion storage performance of 3D network-like SnS2 anode [J].
Yin, Lixiong ;
Chai, Simin ;
Huang, Jianfeng ;
Kong, Xingang ;
Wang, Jia ;
Liu, Yao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 :1006-1013
[34]   Synthesis of core-shell ZnS@C microrods as advanced anode materials for lithium-ion batteries [J].
Li, Qianqian ;
Zhang, Man ;
Nong, Yutong ;
Pan, Qichang ;
Huang, Youguo ;
Wang, Hongqiang ;
Zheng, Fenghua ;
Li, Qingyu .
NEW JOURNAL OF CHEMISTRY, 2022, 46 (37) :18069-18075
[35]   Core-Shell NiFe2O4@TiO2 Nanorods: An Anode Material with Enhanced Electrochemical Performance for Lithium-Ion Batteries [J].
Huang, Gang ;
Zhang, Feifei ;
Du, Xinchuan ;
Wang, Jianwei ;
Yin, Dongming ;
Wang, Limin .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (35) :11214-11219
[36]   In situ synthesis of concentric C@MoS2 core-shell nanospheres as anode for lithium ion battery [J].
Li, Nan ;
Liu, Zhipeng ;
Gao, Qian ;
Li, Xiaotian ;
Wang, Runwei ;
Yan, Xiao ;
Li, Yanjuan .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (22) :13183-13191
[37]   Numerical Simulation of a 2D Layered Anode for use in Lithium-Ion Batteries [J].
Galashev, Alexander .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (09)
[38]   Preparation of SnO2 Nanoparticle and Performance as Lithium-ion Battery Anode [J].
Feng, Lili ;
Xuan, Zhewen ;
Ji, Siping ;
Min, Weiru ;
Zhao, Hongbo ;
Gao, Hui .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (03) :2370-2376
[39]   Enhanced Electrochemical Properties of d-Ti3C2Tx Anode by h-BN Addition for Lithium-Ion Rechargeable Battery [J].
Du, X. ;
Wang, L. ;
Xia, Q. ;
Hu, Q. ;
Zhou, A. .
NANO, 2022, 17 (14)
[40]   Metal-organic frameworks-derived CoMOF-D@Si@C core-shell structure for high-performance lithium-ion battery anode [J].
Yan, Zhilin ;
Liu, Jiyang ;
Lin, Yangfan ;
Deng, Zheng ;
He, Xueqin ;
Ren, Jianguo ;
He, Peng ;
Pang, Chunlei ;
Xiao, Chengmao ;
Yang, Deren ;
Yu, Haojie ;
Du, Ning .
ELECTROCHIMICA ACTA, 2021, 390