C@SnS2 core-shell 0D/2D nanocomposite with excellent electrochemical performance as lithium-ion battery anode

被引:4
作者
Jin, Changqing [1 ]
Wei, Yongxing [1 ]
Nan, Ruihua [1 ]
Jian, Zengyun [1 ]
Ding, Qingping [2 ,3 ]
机构
[1] Xian Technol Univ, Sch Mat & Chem Engn, Shaanxi Key Lab Optoelect Funct Mat & Devices, Xian 710021, Peoples R China
[2] Iowa State Univ, US DOE, Ames Natl Lab, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Anode material; SnS2; Heterojunction; Carbon; HIGH REVERSIBLE CAPACITY; SNS2; NANOSHEETS; SNS2/GRAPHENE HYBRID; GRAPHENE; MICROSPHERES; COMPOSITES;
D O I
10.1016/j.electacta.2023.143747
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
C@SnS2 core -shell 0D/2D nanocomposite was successfully prepared by a one-step hydrothermal method. The SnS2 nanosheets were heterogeneously nucleated and grown on the surface of carbon spheres. As an anode for lithium -ion batteries, the electrochemical performance of the C@SnS2 composite outperforms that of SnS2 nanoflowers. After 100 cycles, the reversible discharge specific capacity reaches an impressive value of 802 mAh g-1 at a current density of 100 mA g-1. Even after 600 cycles, the discharge specific capacity remains a value of 442 mAh g-1, under a high current density of 1 A g-1. This remarkable lithium -ion storage performance can be attributed to the unique core -shell nanostructure and the synergy between SnS2 nanosheets and carbon spheres. This study advances our understanding of the vital role of carbon in fabricating nano-heterojunction or composite electrodes and provides a feasible route to significantly improve the electrochemical properties of SnS2 and other metal sulfides.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Core-shell FeS2@NSC grown on graphene for high performance lithium-ion storage [J].
Zhang, Yating ;
Zhang, Zhanrui ;
Zhu, Youyu ;
Wang, Ruiqi ;
Suo, Ke ;
Lin, Gang ;
Zhang, Nana .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 918
[22]   Nb2O5-carbon core-shell nanocomposite as anode material for lithium ion battery [J].
Li, Ge ;
Wang, Xiaolei ;
Ma, Xueming .
JOURNAL OF ENERGY CHEMISTRY, 2013, 22 (03) :357-362
[23]   Hierarchical MoO3/SnS2 core-shell nanowires with enhanced electrochemical performance for lithium-ion batteries [J].
Hu, Chenli ;
Shu, Haibo ;
Shen, Zihong ;
Zhao, Tianfeng ;
Liang, Pei ;
Chen, Xiaoshuang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (25) :17171-17179
[24]   NbO-carbon core-shell nanocomposite as anode material for lithium ion battery [J].
Ge Li ;
Xiaolei Wang ;
Xueming Ma .
Journal of Energy Chemistry, 2013, (03) :357-362
[25]   Exploring the potential of 2D beryllonitrene as a lithium-ion battery anode: a theoretical study [J].
Vaidyanathan, Antara ;
Dua, Harkishan ;
Sarkar, Utpal ;
Seriani, Nicola ;
Chakraborty, Brahmananda .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (14) :6924-6937
[26]   Double-walled core-shell structured Si@SiO2@C nanocomposite as anode for lithium-ion batteries [J].
Tao, Hua-Chao ;
Yang, Xue-Lin ;
Zhang, Lu-Lu ;
Ni, Shi-Bing .
IONICS, 2014, 20 (11) :1547-1552
[27]   Preparation of C@SnO2 core-shell nanostructure with enhanced electrochemical performance for lithium-ion batteries [J].
Zhang, Y. K. ;
Wang, H. ;
Zhang, W. X. ;
Zhao, P. ;
He, C. .
IONICS, 2022, 28 (01) :181-189
[28]   Elaborate interface design of SnS2/SnO2@C/rGO nanocomposite as a high-performance anode for lithium-ion batteries [J].
Jin, Shuangling ;
Gu, Feijiao ;
Wang, Jitong ;
Ma, Xia ;
Qian, Chenliang ;
Lan, Yaxin ;
Han, Qi ;
Li, Junqiang ;
Wang, Xiaorui ;
Zhang, Rui ;
Qiao, Wenming ;
Ling, Licheng ;
Jin, Minglin .
ELECTROCHIMICA ACTA, 2022, 405
[29]   High electrochemical performances of α-MoO3@MnO2 core-shell nanorods as lithium-ion battery anodes [J].
Wang, Qiang ;
Zhang, De-An ;
Wang, Qi ;
Sun, Jing ;
Xing, Li-Li ;
Xue, Xin-Yu .
ELECTROCHIMICA ACTA, 2014, 146 :411-418
[30]   Porous Co3O4 nanorods as anode for lithium-ion battery with excellent electrochemical performance [J].
Guo, Jinxue ;
Chen, Lei ;
Zhang, Xiao ;
Chen, Haoxin .
JOURNAL OF SOLID STATE CHEMISTRY, 2014, 213 :193-197