Towards intelligent fiber laser design by using a feed-forward neural network

被引:0
|
作者
Liu, Xinyang [1 ]
Gumenyuk, Regina [1 ,2 ]
机构
[1] Tampere Univ, Lab Photon, Korkeakoulunkatu 3, Tampere 33720, Finland
[2] Tampere Univ, Tampere Inst Adv Study, Kalevantie 4, Tampere 33100, Finland
来源
ADVANCED LASERS, HIGH-POWER LASERS, AND APPLICATIONS XIV | 2023年 / 12760卷
关键词
Intelligent laser cavity design; feed-forward neural network; laser output prediction;
D O I
10.1117/12.2686809
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrated a high accuracy prediction of the fiber laser output parameters by using a feed-forward neural network. We explored both the gain and spectral filter parameters to test the prediction performance of the neural network and realized the mapping between cavity parameters and laser output performance. We also investigated how the number of hidden layers could influence the accuracy of prediction. Based on the results, the output spectrum and temporal pulse profiles can be predicted with high accuracy in various fiber laser designs. Our work paves the way to intelligent laser design with ultimate autonomy.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Design of resonant metasurface absorber using feed-forward neural network
    Abraray, Abdelghafour
    Baghel, Amit
    Maslovski, Stanislav
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2024, 66 (01)
  • [2] Feed-forward neural network training using sparse representation
    Yang, Jie
    Ma, Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 255 - 264
  • [3] Compressor map generation using a feed-forward neural network and rig data
    Gholamrezaei, M.
    Ghorbanian, K.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2010, 224 (A1) : 97 - 108
  • [4] Power system network observability determination using feed-forward neural networks
    Jain, A
    Choi, J
    Min, J
    POWERCON 2002: INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY, VOLS 1-4, PROCEEDINGS, 2002, : 2086 - 2090
  • [5] A Comparative Analysis of Feed-forward Neural Network & Recurrent Neural Network to Detect Intrusion
    Chowdhury, Nipa
    Kashem, Mohammod Abul
    PROCEEDINGS OF ICECE 2008, VOLS 1 AND 2, 2008, : 488 - 492
  • [6] Enhancing the Output Characteristics of a Photovoltaic Position Sensor Using a Feed-Forward Neural Network
    Agee, J. T.
    Masupe, S.
    Jeffrey, M.
    Jimoh, A. A.
    ADVANCES IN MATERIALS AND SYSTEMS TECHNOLOGIES II, 2009, 62-64 : 506 - +
  • [7] Re-configurable parallel Feed-Forward Neural Network implementation using FPGA
    El-Sharkawy, Mohamed
    Wael, Miran
    Mashaly, Maggie
    Azab, Eman
    INTEGRATION-THE VLSI JOURNAL, 2024, 97
  • [8] Production test-based classification of antennas using the feed-forward neural network
    Zalusky, Roman
    Durackova, Daniela
    Stopjakova, Viera
    Brenkus, Juraj
    Mihalov, Jozef
    Majer, Libor
    2014 24TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA 2014), 2014,
  • [9] A Feed-Forward Neural Network for Increasing the Hopfield-Network Storage Capacity
    Zhao, Shaokai
    Chen, Bin
    Wang, Hui
    Luo, Zhiyuan
    Zhang, Tao
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2022, 32 (06)
  • [10] Discovery of Optimal Neurons and Hidden Layers in Feed-Forward Neural Network
    Thomas, Likewin
    Kumar, Manoj M., V
    Annappa, B.
    2016 IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND INNOVATIVE BUSINESS PRACTICES FOR THE TRANSFORMATION OF SOCIETIES (EMERGITECH), 2016, : 286 - 291