Inverse Problem of Determining the Kernel of Integro-Differential Fractional Diffusion Equation in Bounded Domain

被引:6
|
作者
Durdiev, D. K. [1 ,2 ]
Jumaev, J. J. [1 ,2 ]
机构
[1] Acad Sci Uzbek, Inst Math, Tashkent 100170, Uzbekistan
[2] Bukhara State Univ, Bukhara 200118, Uzbekistan
关键词
fractional derivative; inverse problem; integral equation; Fourier series; Mittag-Leffler function; fixed point theorem; THERMAL MEMORY; COEFFICIENT;
D O I
10.3103/S1066369X23100043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an inverse problem of determining a kernel in a one-dimensional integro-differential time-fractional diffusion equation with initial-boundary and overdetermination conditions is investigated. An auxiliary problem equivalent to the problem is introduced first. By Fourier method this auxilary problem is reduced to equivalent integral equations. Then, using estimates of the Mittag-Leffler function and successive aproximation method, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown kernel which will be used in study of inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] The Inverse Problem for an Integro-Differential Equation and its Solution Method
    Denisov A.M.
    Efimov A.A.
    Computational Mathematics and Modeling, 2019, 30 (4) : 403 - 412
  • [22] Global solvability of an inverse problem for an integro-differential equation of electrodynamics
    D. K. Durdiev
    Differential Equations, 2008, 44 : 893 - 899
  • [23] KERNEL DETERMINATION PROBLEM IN AN INTEGRO-DIFFERENTIAL EQUATION OF PARABOLIC TYPE WITH NONLOCAL CONDITION
    Durdiev, D. Q.
    Jumaev, J. J.
    Atoev, D. D.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (01): : 90 - 102
  • [24] Two-dimensional Inverse Problem for an Integro-differential Equation of Hyperbolic Type
    Safarov, Jurabek Sh.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (05): : 651 - 662
  • [25] Inverse Problems for Degenerate Fractional Integro-Differential Equations
    Al Horani, Mohammed
    Fabrizio, Mauro
    Favini, Angelo
    Tanabe, Hiroki
    MATHEMATICS, 2020, 8 (04)
  • [26] Reconstructing a fractional integro-differential equation
    Boumenir, Amin
    Kim Tuan, Vu
    Al-Khulaifi, Waled
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 3159 - 3166
  • [27] Some inverse problems for fractional integro-differential equation involving two arbitrary kernels
    Javed, Sehrish
    Malik, Salman A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [28] The Inverse Problem of Recovering the Kernel and the Right-Hand Side of a Fifth Order Integro-Differential Equation
    Tursunov, D. A.
    Kozhobekov, K. G.
    Mamytov, A. O.
    Tursunov, E. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (10) : 5295 - 5304
  • [29] THE LOCAL SOLVABILITY OF A PROBLEM OF DETERMINING THE SPATIAL PART OF A MULTIDIMENSIONAL KERNEL IN THE INTEGRO-DIFFERENTIAL EQUATION OF HYPERBOLIC TYPE
    Durdiev, D. K.
    Safarov, J. Sh.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2012, (04): : 37 - 47
  • [30] A two-dimensional inverse problem for an integro-differential equation of electrodynamics
    Romanov, V. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 280 : 151 - 157