Photothermal Prussian blue nanoparticles generate potent multi-targeted tumor-specific T cells as an adoptive cell therapy

被引:5
作者
Sweeney, Elizabeth E. [1 ,2 ]
Sekhri, Palak [2 ,3 ]
Muniraj, Nethaji [3 ]
Chen, Jie [2 ]
Feng, Sally [2 ,4 ]
Terao, Joshua [3 ]
Chin, Samantha J. [2 ,4 ]
Schmidt, Danielle E. [2 ]
Bollard, Catherine M. [2 ,3 ]
Cruz, Conrad Russell Y. [2 ,3 ]
Fernandes, Rohan [2 ,4 ,5 ,6 ]
机构
[1] George Washington Univ, Sch Med & Hlth Sci, Dept Biochem & Mol Med, Washington, DC USA
[2] Childrens Natl Hosp, Ctr Canc & Immunol Res, Washington, DC USA
[3] George Washington Univ, Sch Med & Hlth Sci, Integrated Biomed Sci Program, Washington, DC USA
[4] George Washington Univ, George Washington Canc Ctr, Sch Med & Hlth Sci, Washington, DC USA
[5] George Washington Univ, Sch Med & Hlth Sci, Dept Med, Washington, DC USA
[6] George Washington Univ, Sch Med & Hlth Sci, Dept Med, 800 22nd St NW, Washington, DC 20052 USA
基金
美国国家卫生研究院;
关键词
adoptive T cell therapy; cancer; hematological malignancies; photothermal therapy; Prussian blue nanoparticles; solid tumors; tumor-specific T cells; DENDRITIC CELLS; ANTIGEN; HETEROGENEITY; EXPRESSION; GLIOBLASTOMA; LYMPHOCYTES; ACTIVATION; NANOCUBES; RESPONSES; CHILDREN;
D O I
10.1002/btm2.10639
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) is an effective tumor treatment capable of eliciting an antitumor immune response. Motivated by the ability of PBNP-PTT to potentiate endogenous immune responses, we recently demonstrated that PBNP-PTT could be used ex vivo to generate tumor-specific T cells against glioblastoma (GBM) cell lines as an adoptive T cell therapy (ATCT). In this study, we further developed this promising T cell development platform. First, we assessed the phenotype and function of T cells generated using PBNP-PTT. We observed that PBNP-PTT facilitated CD8+ T cell expansion from healthy donor PBMCs that secreted IFN gamma and TNF alpha and upregulated CD107a in response to engagement with target U87 cells, suggesting specific antitumor T cell activation and degranulation. Further, CD8+ effector and effector memory T cell populations significantly expanded after co-culture with U87 cells, consistent with tumor-specific effector responses. In orthotopically implanted U87 GBM tumors in vivo, PBNP-PTT-derived T cells effectively reduced U87 tumor growth and generated long-term survival in >80% of tumor-bearing mice by Day 100, compared to 0% of mice treated with PBS, non-specific T cells, or T cells expanded from lysed U87 cells, demonstrating an enhanced antitumor efficacy of this ATCT platform. Finally, we tested the generalizability of our approach by generating T cells targeting medulloblastoma (D556), breast cancer (MDA-MB-231), neuroblastoma (SH-SY5Y), and acute monocytic leukemia (THP-1) cell lines. The resulting T cells secreted IFN gamma and exerted increased tumor-specific cytolytic function relative to controls, demonstrating the versatility of PBNP-PTT in generating tumor-specific T cells for ATCT.
引用
收藏
页数:14
相关论文
共 77 条
[1]  
AKBAR AN, 1988, J IMMUNOL, V140, P2171
[2]   CAR T cells for brain tumors: Lessons learned and road ahead [J].
Akhavan, David ;
Alizadeh, Darya ;
Wang, Dongrui ;
Weist, Michael R. ;
Shepphird, Jennifer K. ;
Brown, Christine E. .
IMMUNOLOGICAL REVIEWS, 2019, 290 (01) :60-84
[3]   Relationship between CD107a expression and cytotoxic activity [J].
Aktas, Esin ;
Kucuksezer, Umut Can ;
Bilgic, Sema ;
Erten, Gaye ;
Deniz, Gunnur .
CELLULAR IMMUNOLOGY, 2009, 254 (02) :149-154
[4]  
[Anonymous], Radiogardase - ferric hexacyanoferrate(ii) capsule
[5]   Photothermal therapies to improve immune checkpoint blockade for cancer [J].
Balakrishnan, Preethi B. ;
Sweeney, Elizabeth E. ;
Ramanujam, Anvitha S. ;
Fernandes, Rohan .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2020, 37 (03) :34-49
[6]   CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma [J].
Balakrishnan, Preethi Bala ;
Ledezma, Debbie K. ;
Cano-Mejia, Juliana ;
Andricovich, Jaclyn ;
Palmer, Erica ;
Patel, Vishal A. ;
Latham, Patricia S. ;
Yvon, Eric S. ;
Villagra, Alejandro ;
Fernandes, Rohan ;
Sweeney, Elizabeth E. .
NANO RESEARCH, 2022, 15 (03) :2300-2314
[7]   Nanoparticles for Enhanced Adoptive T Cell Therapies and Future Perspectives for CNS Tumors [J].
Balakrishnan, Preethi Bala ;
Sweeney, Elizabeth E. .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[8]   Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity [J].
Bhat, Purnima ;
Leggatt, Graham ;
Waterhouse, Nigel ;
Frazer, Ian H. .
CELL DEATH & DISEASE, 2017, 8 :e2836-e2836
[9]   Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma [J].
Bollard, Catherine M. ;
Tripic, Tamara ;
Cruz, Conrad Russell ;
Dotti, Gianpietro ;
Gottschalk, Stephen ;
Torrano, Vicky ;
Dakhova, Olga ;
Carrum, George ;
Ramos, Carlos A. ;
Liu, Hao ;
Wu, Meng-Fen ;
Marcogliese, Andrea N. ;
Barese, Cecilia ;
Zu, Youli ;
Lee, Daniel Y. ;
O'Connor, Owen ;
Gee, Adrian P. ;
Brenner, Malcolm K. ;
Heslop, Helen E. ;
Rooney, Cliona M. .
JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (11) :1128-+
[10]   Sustained Complete Responses in Patients With Lymphoma Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein-Barr Virus Latent Membrane Proteins [J].
Bollard, Catherine M. ;
Gottschalk, Stephen ;
Torrano, Vicky ;
Diouf, Oumar ;
Ku, Stephanie ;
Hazrat, Yasmin ;
Carrum, George ;
Ramos, Carlos ;
Fayad, Luis ;
Shpall, Elizabeth J. ;
Pro, Barbara ;
Liu, Hao ;
Wu, Meng-Fen ;
Lee, Daniel ;
Sheehan, Andrea M. ;
Zu, Youli ;
Gee, Adrian P. ;
Brenner, Malcolm K. ;
Heslop, Helen E. ;
Rooney, Cliona M. .
JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (08) :798-+