LOCAL WHITTLE ESTIMATION OF HIGH-DIMENSIONAL LONG-RUN VARIANCE AND PRECISION MATRICES

被引:3
作者
Baek, Changryong [1 ]
Duker, Marie-christine [2 ]
Pipiras, Vladas [3 ]
机构
[1] Sungkyunkwan Univ, Dept Stat, Seoul, South Korea
[2] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY USA
[3] Univ North Carolina Chapel Hill, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
基金
新加坡国家研究基金会;
关键词
High-dimensional time series; frequency domain; short-and long-range dependence; spectral density estimation; shrinkage estimation; local Whittle estimation; GAUSSIAN SEMIPARAMETRIC ESTIMATION; LARGE COVARIANCE; REGULARIZED ESTIMATION; PENALIZED LIKELIHOOD; MODEL SELECTION; SPARSE; SHRINKAGE; LASSO;
D O I
10.1214/23-AOS2330
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work develops nonasymptotic theory for estimation of the longrun variance matrix and its inverse, the so-called precision matrix, for highdimensional time series under general assumptions on the dependence structure including long-range dependence. The estimation involves shrinkage techniques, which are thresholding and penalizing versions of the classical multivariate local Whittle estimator. The results ensure consistent estimation in a double asymptotic regime where the number of component time series is allowed to grow with the sample size as long as the true model parameters are sparse. The key technical result is a concentration inequality of the local Whittle estimator for the long-run variance matrix around the true model parameters. In particular, it handles simultaneously the estimation of the memory parameters, which enter the underlying model. Novel algorithms for the considered procedures are proposed, and a simulation study and a data application are also provided.
引用
收藏
页码:2386 / 2414
页数:29
相关论文
共 53 条
[1]  
BAEK C., 2023, Supplement to "Local Whittle estimation of high-dimensional long-run variance and precision matrices, DOI [10.1214/23-AOS2330SUPP, DOI 10.1214/23-AOS2330SUPP]
[2]   Asymptotics of bivariate local Whittle estimators with applications to fractal connectivity [J].
Baek, Changryong ;
Kechagias, Stefanos ;
Pipiras, Vladas .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 :245-268
[3]   Semiparametric, parametric and possibly sparse models for multivariate long-range dependence [J].
Baek, Changryong ;
Kechagias, Stefanos ;
Pipiras, Vladas .
WAVELETS AND SPARSITY XVII, 2017, 10394
[4]   On distinguishing multiple changes in mean and long-range dependence using local Whittle estimation [J].
Baek, Changryong ;
Pipiras, Vladas .
ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 :931-964
[5]   REGULARIZED ESTIMATION IN SPARSE HIGH-DIMENSIONAL TIME SERIES MODELS [J].
Basu, Sumanta ;
Michailidis, George .
ANNALS OF STATISTICS, 2015, 43 (04) :1535-1567
[6]  
Beran J., 2013, LONG MEMORY PROCESSE, DOI DOI 10.1007/978-3-642-35512-7
[7]   Regularized estimation of large covariance matrices [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (01) :199-227
[8]   COVARIANCE REGULARIZATION BY THRESHOLDING [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (06) :2577-2604
[9]   Sparse estimation of a covariance matrix [J].
Bien, Jacob ;
Tibshirani, Robert J. .
BIOMETRIKA, 2011, 98 (04) :807-820
[10]   Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold [J].
Bordier, Cecile ;
Nicolini, Carlo ;
Bifone, Angelo .
FRONTIERS IN NEUROSCIENCE, 2017, 11