Extremal Kahler Metrics of Toric Manifolds

被引:0
作者
Li, An-Min [1 ]
Sheng, Li [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Extremal Kahler metric; Toric manifolds; K-stability; Uniform stability; UNIFORM K-STABILITY; SCALAR CURVATURE; GEOMETRY; RAYS;
D O I
10.1007/s11401-023-0047-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a survey of some recent developments concerning extremal Kahler metrics on Toric Manifolds.
引用
收藏
页码:827 / 836
页数:10
相关论文
共 24 条
[1]   Kahler geometry of toric varieties and extremal metrics [J].
Abreu, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (06) :641-651
[2]   Hamiltonian 2-forms in Kahler geometry, III Extremal metrics and stability [J].
Apostolov, Vestislav ;
Calderbank, DavidM. J. ;
Gauduchon, Paul ;
Tonnesen-Friedman, Christina W. .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :547-601
[3]   REGULARITY OF WEAK MINIMIZERS OF THE K-ENERGY AND APPLICATIONS TO PROPERNESS AND K-STABILITY [J].
Berman, Robert J. ;
Darvas, Tamas ;
Lu, Chinh H. .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (02) :267-289
[4]  
Boucksom S, 2017, ANN I FOURIER, V67, P743
[5]   Prescribed scalar curvatures for homogeneous toric bundles [J].
Chen, Bohui ;
Han, Qing ;
Li, An-Min ;
Lian, Zhao ;
Sheng, Li .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 63 :186-211
[6]   Extremal metrics on toric surfaces [J].
Chen, Bohui ;
Li, An-Min ;
Sheng, Li .
ADVANCES IN MATHEMATICS, 2018, 340 :363-405
[7]   Uniform K-stability for extremal metrics on tone varieties [J].
Chen, Bohui ;
Li, An-Min ;
Sheng, Li .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (05) :1487-1500
[8]   ON THE CONSTANT SCALAR CURVATURE KAHLER METRICS (I)-A PRIORI ESTIMATES [J].
Chen, Xiuxiong ;
Cheng, Jingrui .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 34 (04) :909-936
[9]   ON THE CONSTANT SCALAR CURVATURE KAHLER METRICS (II)-EXISTENCE RESULTS [J].
Chen, Xiuxiong ;
Cheng, Jingrui .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 34 (04) :937-1009
[10]   Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry [J].
Darvas, Tamas ;
Lu, Chinh H. .
GEOMETRY & TOPOLOGY, 2020, 24 (04) :1907-1967