Thermal and mechanical performance of 3D printing functionally graded concrete: The role of SAC on the rheology and phase evolution of 3DPC

被引:11
|
作者
Gao, Huaxing [1 ]
Chen, Yuxuan [1 ]
Chen, Qian [1 ]
Yu, Qingliang [1 ,2 ]
机构
[1] Wuhan Univ, Sch Civil Engn, Wuhan 430072, Peoples R China
[2] Eindhoven Univ Technol, Dept Built Environm, POB 513, NL-5600 MB Eindhoven, Netherlands
基金
中国国家自然科学基金;
关键词
3D printing concrete; Functional graded concrete; Mechanical performance; Thermal insulating; Rheology; EXPANDED POLYSTYRENE EPS; CEMENT COMPOSITES; PORTLAND-CEMENT; LIGHTWEIGHT; CONDUCTIVITY; ADDITIONS; STRENGTH; AEROGELS; COMFORT;
D O I
10.1016/j.conbuildmat.2023.133830
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In order to address the dual objectives of enhancing the mechanical and thermal performance of 3D printed concrete, this paper presents a 3D printing approach to design and prepare functional graded concrete for energy saving sandwich structures with both thermal insulation and load-bearing functions. The 3D printing functionally graded concrete (3DPFGC) with a sandwich structure, consists of an expanded polystyrene concrete inner layer and a 3D printed concrete outer layer. In addition to the three-dimensional compressive strength and double-shearing tests, the thermal conductivity of 3DPFGC was also measured by steady-state method and compared with the transient method and verified by theoretical formulas. The influence of sulphoaluminate cement on the printability of the load-bearing layer was also comprehensively investigated by calorimetry test, rheological test, XRD and TG analysis. The addition of SAC has a significant impact on the early fresh properties, including accelerating the setting time and optimizing the rheological properties, directly improving the printing performance. 3DPFGC exhibits significantly higher compressive strength compared with other lightweight insulating concrete with similar thermal conductivities. The outcome of this research provides valuable guidance for the application of 3DPFGC in building engineering, contributing to the development of energy-efficient and structural construction materials.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] High-Performance 3D Concrete Printing with Zeolite
    Lu, Bing
    Li, Mingyang
    Qian, Shunzhi
    Li, King Ho Holden
    Wong, Teck Neng
    CONSTRUCTION 3D PRINTING, 4-IC3DCP CONFERENCE 2023, 2024, : 149 - 155
  • [32] Experimental Assessment on Printing Performance and Mechanical Properties of Underwater Self-Protecting 3D Printing Concrete
    An, Xuehui
    Liang, Qimin
    Li, Pengfei
    You, Wei
    Yin, Xianghong
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2025, 23 (02) : 79 - 98
  • [33] Mechanical properties and failure mechanism of 3D printing ultra-high performance concrete
    Yao, Yiming
    Zhang, Jiawei
    Sun, Yuanfeng
    Pi, Yilin
    Wang, Jingquan
    Lu, Cong
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 447
  • [34] ANALYSIS OF MECHANICAL PERFORMANCES OF CYLINDER IN 3D CONCRETE PRINTING PROCESSES
    Liu X.-T.
    Sun B.-H.
    Gongcheng Lixue/Engineering Mechanics, 2023, 40 (01): : 180 - 189and200
  • [35] Active Rheology Control of Concrete Using Encapsulated Accelerator as Responsive Additives for Concrete 3D Printing
    Kanagasuntharam, Sasitharan
    Ramakrishnan, Sayanthan
    Sanjayan, Jay
    FOURTH RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, DC 2024, 2024, 53 : 244 - 251
  • [36] Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing
    Valizadeh, Iman
    Al Aboud, Ahmad
    Doersam, Edgar
    Weeger, Oliver
    ADDITIVE MANUFACTURING, 2021, 47
  • [37] Study on flexural properties of 3D printing functionally graded lattice structure cement composites
    Zhang, Xinyu
    Liu, Peng
    Wu, Linmei
    MATERIALS LETTERS, 2024, 375
  • [38] PLA Mechanical Performance Before and After 3D Printing
    Salem, Houcine
    Abouchadi, Hamid
    Elbikri, Khalid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 324 - 330
  • [39] Mechanical anisotropy, rheology and carbon footprint of 3D printable concrete: A review
    Wang, Chaofan
    Chen, Bing
    Vo, Thanh Liem
    Rezania, Mohammad
    JOURNAL OF BUILDING ENGINEERING, 2023, 76
  • [40] Evaluation of 3D concrete printing performance from a rheological perspective
    Lee, Keon-Woo
    Lee, Ho-Jae
    Choi, Myoung-Sung
    ADVANCES IN CONCRETE CONSTRUCTION, 2019, 8 (02) : 155 - 163