A Review of the Rayleigh Distribution: Properties, Estimation & Application to COVID-19 Data

被引:5
作者
Anis, M. Z. [1 ]
Okorie, I. E. [2 ]
Ahsanullah, M. [3 ]
机构
[1] Indian Stat Inst, SQC & Unit, 203 BT Rd, Kolkata 700108, India
[2] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[3] Rider Univ, Lawrenceville, NJ USA
关键词
Estimation methods; Moments; Reliability functions; Statistical properties; STATISTICAL-ANALYSIS; ORDER-STATISTICS; PARAMETER; WEIBULL; MODELS;
D O I
10.1007/s40840-023-01605-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the different properties of the Rayleigh distribution. These include the descriptive properties, reliability properties and stochastic orders. Next, we consider seven different estimation methods for estimating the parameter, namely: maximum likelihood estimation, matching moments estimation, maximum product of spacing estimation, ordinary least squares estimation, Cramer-von Mises estimation, Anderson-Darling estimation and right-tail Anderson-Darling estimation. A simulation study is done to assess the performance of these methods of estimation and the results shows that all the estimators are mostly efficient and consistent. Finally, using the method of maximum likelihood estimation, we demonstrate the applicability of the Rayleigh distribution by modelling the Netherlands's COVID-19 mortality rate data as an example.
引用
收藏
页数:35
相关论文
共 50 条
[32]   Study of COVID-19 cases with real data analysis [J].
Albalawi, Wedad ;
Nisar, Kottakkaran Sooppy ;
Omer, Nadir ;
Aslam, Adnan ;
Hussain, Takasar ;
Ozair, Muhammad ;
Hussain, Shahid ;
Hameed, Nida .
ALEXANDRIA ENGINEERING JOURNAL, 2025, 113 :672-680
[33]   Role of data science in managing COVID-19 pandemic [J].
Saxena, Nikita ;
Gupta, Priyanka ;
Raman, Ruchir ;
Rathore, Anurag S. .
INDIAN CHEMICAL ENGINEER, 2020, 62 (04) :385-395
[34]   Empirical Application of Generalized Rayleigh Distribution for Mineral Resource Estimation of Seabed Polymetallic Nodules [J].
Yu, Gordon ;
Parianos, John .
MINERALS, 2021, 11 (05)
[35]   COVID-19 prediction models: a systematic literature review [J].
Shakeel, Sheikh Muzaffar ;
Kumar, Nithya Sathya ;
Madalli, Pranita Pandurang ;
Srinivasaiah, Rashmi ;
Swamy, Devappa Renuka .
OSONG PUBLIC HEALTH AND RESEARCH PERSPECTIVES, 2021, 12 (04) :215-229
[36]   A comprehensive review of federated learning for COVID-19 detection [J].
Naz, Sadaf ;
Phan, Khoa T. ;
Chen, Yi-Ping Phoebe .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (03) :2371-2392
[37]   A general class of small area estimation using calibrated hierarchical likelihood approach with applications to COVID-19 data [J].
Rathnayake, Nirosha ;
Dai, Hongying Daisy ;
Charnigo, Richard ;
Schmid, Kendra ;
Meza, Jane .
JOURNAL OF APPLIED STATISTICS, 2023, 50 (16) :3384-3404
[38]   An empirical application of herding behavior and compliance in the COVID-19 crisis [J].
Nilsson, Helena ;
Backman, Mikaela .
KYKLOS, 2024, 77 (02) :428-457
[39]   Equation for epidemic spread with the quarantine measures: application to COVID-19 [J].
Trigger, S. A. ;
Czerniawski, E. B. .
PHYSICA SCRIPTA, 2020, 95 (10)
[40]   Estimation of COVID-19 epidemic curves using genetic programming algorithm [J].
Andelic, Nikola ;
Segota, Sandi Baressi ;
Lorencin, Ivan ;
Mrzljak, Vedran ;
Car, Zlatan .
HEALTH INFORMATICS JOURNAL, 2021, 27 (01) :1-40