A Review of the Rayleigh Distribution: Properties, Estimation & Application to COVID-19 Data

被引:5
作者
Anis, M. Z. [1 ]
Okorie, I. E. [2 ]
Ahsanullah, M. [3 ]
机构
[1] Indian Stat Inst, SQC & Unit, 203 BT Rd, Kolkata 700108, India
[2] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[3] Rider Univ, Lawrenceville, NJ USA
关键词
Estimation methods; Moments; Reliability functions; Statistical properties; STATISTICAL-ANALYSIS; ORDER-STATISTICS; PARAMETER; WEIBULL; MODELS;
D O I
10.1007/s40840-023-01605-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the different properties of the Rayleigh distribution. These include the descriptive properties, reliability properties and stochastic orders. Next, we consider seven different estimation methods for estimating the parameter, namely: maximum likelihood estimation, matching moments estimation, maximum product of spacing estimation, ordinary least squares estimation, Cramer-von Mises estimation, Anderson-Darling estimation and right-tail Anderson-Darling estimation. A simulation study is done to assess the performance of these methods of estimation and the results shows that all the estimators are mostly efficient and consistent. Finally, using the method of maximum likelihood estimation, we demonstrate the applicability of the Rayleigh distribution by modelling the Netherlands's COVID-19 mortality rate data as an example.
引用
收藏
页数:35
相关论文
共 50 条
[21]   Exponentiated Odd Lomax Exponential distribution with application to COVID-19 death cases of Nepal [J].
Dhungana, Govinda Prasad ;
Kumar, Vijay .
PLOS ONE, 2022, 17 (06)
[22]   Structure of bivariate Rayleigh proportional hazard rate model with its associated copula applied on COVID-19 data [J].
Hassanein, Wafaa Anwar Abd El-Latif ;
Seyam, Marwa Moghazy Attia .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (07) :3451-3469
[23]   Distributed learning for heterogeneous clinical data with application to integrating COVID-19 data across 230 sites [J].
Tong, Jiayi ;
Luo, Chongliang ;
Islam, Md Nazmul ;
Sheils, Natalie E. ;
Buresh, John ;
Edmondson, Mackenzie ;
Merkel, Peter A. ;
Lautenbach, Ebbing ;
Duan, Rui ;
Chen, Yong .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[24]   Precision omics data integration and analysis with interoperable ontologies and their application for COVID-19 research [J].
Wang, Zhigang ;
He, Yongqun .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2021, 20 (04) :235-248
[25]   Estimation of COVID-19 prevalence in Italy, Spain, and France [J].
Ceylan, Zeynep .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 729
[26]   The Marshall-Olkin-Weibull-H family: Estimation, simulations, and applications to COVID-19 data [J].
Afify, Ahmed Z. ;
Al-Mofleh, Hazem ;
Aljohani, Hassan M. ;
Cordeiro, Gauss M. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (05)
[27]   COVID-19: Challenges to GIS with Big Data [J].
Zhou, Chenghu ;
Su, Fenzhen ;
Pei, Tao ;
Zhang, An ;
Du, Yunyan ;
Luo, Bin ;
Cao, Zhidong ;
Wang, Juanle ;
Yuan, Wen ;
Zhu, Yunqiang ;
Song, Ci ;
Chen, Jie ;
Xu, Jun ;
Li, Fujia ;
Ma, Ting ;
Jiang, Lili ;
Yan, Fengqin ;
Yi, Jiawei ;
Hu, Yunfeng ;
Liao, Yilan ;
Xiao, Han .
GEOGRAPHY AND SUSTAINABILITY, 2020, 1 (01) :77-87
[28]   Inverse Gompertz Distribution: Properties and Different Estimation Methods with Application to Complete and Censored Data [J].
Eliwa M.S. ;
El-Morshedy M. ;
Ibrahim M. .
Annals of Data Science, 2019, 6 (02) :321-339
[29]   An Alternative Version of Half-Logistic Distribution: Properties, Estimation and Application [J].
Teamah, Abd-Elmonem A. M. ;
Elbanna, Ahmed A. ;
Gemeay, Ahmed M. .
THAILAND STATISTICIAN, 2025, 23 (01) :97-114
[30]   Six sigma DMAIC approach based mobile application for statistical analysis of COVID-19 data [J].
Nagarajaiah, Kavyashree ;
Chandramouli, Supriya Maganahalli ;
Ramakrishna, Lokesh Malavalli .
INTERNATIONAL JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, 2022, 18 (03) :347-364