Brassinosteroids as promoters of seedling growth and antioxidant activity under heavy metal zinc stress in mung bean (Vigna radiata L.)

被引:4
|
作者
Kumar, Naresh [1 ,2 ]
Sharma, Vikas [3 ]
Kaur, Gurpreet [4 ]
Lata, Charu [5 ]
Dasila, Hemant [6 ]
Perveen, Kahkashan [7 ]
Khan, Faheema [7 ]
Gupta, Vijay K. [2 ]
Khanam, Mehrun Nisha [8 ]
机构
[1] Eternal Univ, Dept Chem & Biochem, Rajgarh, India
[2] Kurukshetra Univ, Dept Biochem, Kurukshetra, India
[3] ICAR Natl Dairy Res Inst, Karnal, India
[4] ICAR Cent Soil Salin Res Inst, Karnal, India
[5] ICAR Indian Inst Wheat & Barley Res, RRS, Shimla, India
[6] Eternal Univ, Dept Microbiol, Rajgarh, India
[7] King Saud Univ, Coll Sci, Dept Bot & Microbiol, Riyadh, Saudi Arabia
[8] Seoul Natl Univ, Coll Nat Sci, Sch Biol Sci, Seoul, South Korea
关键词
brassinosteroids; EBL; mung bean; antioxidative enzymes; zinc; heavy metal;
D O I
10.3389/fmicb.2023.1259103
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The escalation of harmful pollutants, including heavy metals, due to industrialization and urbanization has become a global concern. To mitigate the negative impacts of heavy metal stress on germination and early plant development, growth regulators have been employed. This study aimed to evaluate the response of mung bean (Vigna radiata L.) to zinc stress in the presence of brassinosteroids, focusing on seedling growth and antioxidant potential. Mung bean seedlings were treated with three concentrations of 24-epibrassinolide (EBL) (0.1, 0.2, and 0.4 PPM) with or without zinc. Results demonstrated that the application of brassinosteroids, combined with zinc stress, significantly enhanced germination percentage (about 47.06, 63.64, and 120%), speed of germination (about 39.13, 50, and 100%), seedling growth (about 38% in case of treatment combined 0.4 PPM 24-EBL and 1.5 mM ZnSO4) and seedling vigor index (204% in case of treatment combined 0.4 PPM 24-EBL and 1.5 mM ZnSO4) compared to zinc-treated seedlings alone after 24 h. The activities of antioxidative enzymes (catalase, ascorbate peroxidase, polyphenol oxidase, and peroxidase) and total soluble protein content decreased, while lipid peroxidation and proline content exhibited a significant increase (p <= 0.05) when compared to the control. However, the negative effects induced by heavy metal stress on these parameters were significantly mitigated by EBL application. Notably, the most effective concentration of EBL in overcoming zinc stress was found to be 0.4 PPM. These findings underscore the potential of exogenously applied brassinosteroids as a valuable tool in phytoremediation projects by ameliorating heavy metal stress.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Purification and characterization of lipoxygenase from mung bean (Vigna radiata L.) germinating seedlings
    Raveendra Aanangi
    Kasi Viswanath Kotapati
    Bhagath Kumar Palaka
    Thyagaraju Kedam
    Nirmala Devi Kanika
    Dinakara Rao Ampasala
    3 Biotech, 2016, 6
  • [32] Purification and characterization of lipoxygenase from mung bean (Vigna radiata L.) germinating seedlings
    Aanangi, Raveendra
    Kotapati, Kasi Viswanath
    Palaka, Bhagath Kumar
    Kedam, Thyagaraju
    Kanika, Nirmala Devi
    Ampasala, Dinakara Rao
    3 BIOTECH, 2016, 6
  • [33] Effect of Heat Treatment on Nutritional and Chromatic Properties of Mung Bean (Vigna radiata L.)
    Huang, Ping-Hsiu
    Cheng, Yu-Tsung
    Chan, Yung-Jia
    Lu, Wen-Chien
    Li, Po-Hsien
    AGRONOMY-BASEL, 2022, 12 (06):
  • [34] Inhibitory effects of mung bean (Vigna radiata L.) seed and sprout extracts on melanogenesis
    Yoo Min Jeong
    Ji Hoon Ha
    Geun Young Noh
    Soo Nam Park
    Food Science and Biotechnology, 2016, 25 : 567 - 573
  • [35] Role of Reactive Oxygen Species in Cotyledon Senescence During Early Seedling Stage of Mung Bean [Vigna radiata (L.) Wilczek]
    Pal, Lily
    Kar, Rup Kumar
    JOURNAL OF PLANT GROWTH REGULATION, 2019, 38 (01) : 315 - 324
  • [36] Thiourea-induced metabolic changes in two mung bean [Vigna radiata (L.) Wilczek] (Fabaceae) varieties under salt stress
    Shagufta Perveen
    Rabia Farooq
    Muhammad Shahbaz
    Brazilian Journal of Botany, 2016, 39 : 41 - 54
  • [37] Nitrogen limitation affects carbon and nitrogen metabolism in mung bean (Vigna radiata L.)
    Zhou, Hang
    Liu, Ya
    Mu, Baomin
    Wang, Fei
    Feng, Naijie
    Zheng, Dianfeng
    JOURNAL OF PLANT PHYSIOLOGY, 2023, 290
  • [38] Effect of Arbuscular Mycorrhizal Fungi, Selenium and Biochar on Photosynthetic Pigments and Antioxidant Enzyme Activity Under Arsenic Stress in Mung Bean (Vigna radiata)
    Alam, Mohammad Zahangeer
    McGee, Rebecca
    Hoque, Md Anamul
    Ahammed, Golam Jalal
    Carpenter-Boggs, Lynne
    FRONTIERS IN PHYSIOLOGY, 2019, 10
  • [39] Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time
    Huang, Xiya
    Cai, Weixi
    Xu, Baojun
    FOOD CHEMISTRY, 2014, 143 : 268 - 276
  • [40] Thiourea-induced metabolic changes in two mung bean [Vigna radiata (L.) Wilczek] (Fabaceae) varieties under salt stress
    Perveen, Shagufta
    Farooq, Rabia
    Shahbaz, Muhammad
    BRAZILIAN JOURNAL OF BOTANY, 2016, 39 (01) : 41 - 54