Prediction of carcass tissues composition using the neck and shoulder traits in hair lambs with multiresponse multivariate adaptive regression splines

被引:0
作者
Aguilar-Quinonez, Jose Antonio [1 ]
Tirink, Cem [2 ]
Gastelum-Delgado, Miguel A. [1 ,3 ]
Camacho-Perez, Enrique [4 ]
Tyasi, Thobela Louis [5 ]
Herrera-Camacho, Jose [3 ]
Portillo-Salgado, Rodrigo [3 ]
Vazquez-Martinez, Ignacio [3 ]
Chay-Canul, Alfonso J. [3 ]
机构
[1] Univ Autonoma Sinaloa, Fac Agron, Km 17-5 Carretera Culiacan El Dorado, Culiacan 80000, Sinaloa, Mexico
[2] Igdir Univ, Fac Agr, Dept Anim Sci, Biometry Genet Unit, TR-76000 Igdir, Turkiye
[3] Univ Autonoma Yucatan, Fac Ingn, Av Ind Contaminantes S-N, Merida, Yucatan, Mexico
[4] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Agr, Carr Villahermosa Teapa Km 25, Villahermosa 86280, Tabasco, Mexico
[5] Univ Limpopo, Dept Agr Econ & Anim Prod, Private Bag X1106, ZA-0727 Limpopo, South Africa
关键词
Carcass dissection; Predictions methods; Multiresponse; MARS;
D O I
10.1016/j.smallrumres.2023.107090
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
The present study aimed to predict the carcass tissue composition of hair sheep lambs using a multiresponse multivariate adaptive regression splines algorithm. The left half of sixty-six hair lambs were divided into five commercial cuts (neck, shoulder, rib, loin, and leg), each cut was weighed and dissected in total soft tissue (fat and muscle, TSTW) and bone (BOW). The independent variables included variables obtained from neck and shoulder dissection: weights of the neck (NWE) and shoulder (SWE), neck soft STW (NSTW), neck BW (NBOW), shoulder STW (SSTW), and shoulder BW (SBOW). The prediction of hot carcass weight (HCW), cold carcass weight (CCW), carcass soft tissue weight (CSTW), and carcass bone weight (CBWE) had an R2 that ranged from 0.90 to 0.96. It is concluded that some neck traits and all shoulder traits could be used to predict the carcass tissue weights of hair-suckling lambs correctly.
引用
收藏
页数:6
相关论文
共 27 条
  • [1] Utility of MARS Algorithm for Describing Non-Genetic Factors Affecting Pasture Revenue of Morkaraman Breed and Romanov x Morkaraman F1 Crossbred Sheep under Semi Intensive Conditions
    Aksoy, Adem
    Erturk, Yakup Erdal
    Eyduran, Ecevit
    Tariq, Mohammad Masood
    [J]. PAKISTAN JOURNAL OF ZOOLOGY, 2019, 51 (01) : 235 - 240
  • [2] Prediction of kid carcass composition by use of joint dissection
    Argüello, A
    Capote, J
    Ginés, R
    López, JL
    [J]. LIVESTOCK PRODUCTION SCIENCE, 2001, 67 (03): : 293 - 295
  • [3] Multivariate Adaptive Regression Splines (MARS) approach to blast-induced ground vibration prediction
    Arthur, Clement Kweku
    Temeng, Victor Amoako
    Ziggah, Yao Yevenyo
    [J]. INTERNATIONAL JOURNAL OF MINING RECLAMATION AND ENVIRONMENT, 2020, 34 (03) : 198 - 222
  • [4] Asadzadeh N., 2021, Iranian Journal of Applied Animal Science, V11, P605
  • [5] Prediction of Fattening Final Live Weight from some Body Measurements and Fattening Period in Young Bulls of Crossbred and Exotic Breeds using MARS Data Mining Algorithm
    Aytekin, Ibrahim
    Eyduran, Ecevit
    Karadas, Koksal
    Aksahan, Rifat
    Keskin, Ismail
    [J]. PAKISTAN JOURNAL OF ZOOLOGY, 2018, 50 (01) : 189 - 195
  • [6] Prediction of Carcass Traits of Hair Sheep Lambs Using Body Measurements
    Bautista-Diaz, Emmanuel
    Alberto Mezo-Solis, Jesus
    Herrera-Camacho, Jose
    Cruz-Hernandez, Aldenamar
    Gomez-Vazquez, Armando
    Tedeschi, Luis Orlindo
    Aaron Lee-Rangel, Hector
    Vargas-Bello-Perez, Einar
    Juventino Chay-Canul, Alfonso
    [J]. ANIMALS, 2020, 10 (08): : 1 - 14
  • [7] Prediction of carcase characteristics using neck traits from hair-sheep ewes
    de Maria Rivera-Alegria, Flor
    Rios-Rincon, Francisco G.
    Macias-Cruz, Ulises
    Garcia-Herrera, Ricardo A.
    Herrera-Camacho, Jose
    Benaouda, Mohammed
    Angeles-Hernandez, Juan C.
    Munoz-Benitez, Alfonso L.
    Vargas-Bello-Perez, Einar
    Chay-Canul, Alfonso J.
    [J]. ITALIAN JOURNAL OF ANIMAL SCIENCE, 2022, 21 (01) : 106 - 112
  • [8] Comparison of the decision tree, artificial neural network and multiple regression methods for prediction of carcass tissues composition of goat kids
    Ekiz, Bulent
    Baygul, Oguzhan
    Yalcintan, Hulya
    Ozcan, Mustafa
    [J]. MEAT SCIENCE, 2020, 161
  • [9] Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines
    Elith, Jane
    Leathwick, John
    [J]. DIVERSITY AND DISTRIBUTIONS, 2007, 13 (03) : 265 - 275
  • [10] Using the 9th-11th rib section to predict carcase tissue composition in Blackbelly sheep
    Escalante-Clemente, Samuel
    Vazquez-Jimenez, Samuel
    Lopez-Duran, Saravasti K.
    Arcos-Alvarez, Darwin N.
    Arbez-Abnal, Tomas A.
    Pineiro-Vazquez, Angel T.
    Munoz-Benitez, Alfonso L.
    Vargas-Bello-Perez, Einar
    Chay-Canul, Alfonso J.
    [J]. ITALIAN JOURNAL OF ANIMAL SCIENCE, 2022, 21 (01) : 161 - 167