Machine learning based techno-economic process optimisation for CO2 capture via enhanced weathering

被引:10
|
作者
Jiang, Hai [1 ]
Wang, Shuo [2 ]
Xing, Lei [3 ]
Pinfield, Valerie J. [4 ]
Xuan, Jin [3 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China
[3] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, England
[4] Loughborough Univ, Dept Chem Engn, Loughborough LE11 3TU, England
基金
英国工程与自然科学研究理事会;
关键词
Enhanced weathering; Series packed bubble column; Data-driven model; Multi-variable and multi-objective optimisation; CO2; capture; CARBON-DIOXIDE; CALCITE DISSOLUTION; MASS-TRANSFER; GAS-LIQUID; KINETICS; CONSTANTS; FLOW; DISSOCIATION; ARAGONITE; SEAWATER;
D O I
10.1016/j.egyai.2023.100234
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work evaluated the practicability and economy of the enhanced weathering (EW)-based CO2 capture in series packed bubble column (S-PBC) contactors operated with different process configurations and conditions. The S-PBC contactors are designed to fully use the advantages of abundant seawater and highly efficient freshwater through a holistic M4 model, including multi-physics, machine learning, multi-variable and multi objective optimisation. An economic analysis is then performed to investigate the cost of different S-PBC configurations. A data-driven surrogate model based on a novel machine learning algorithm, extended adaptive hybrid functions (E-AHF), is implemented and trained by the data generated by the physics-based models. GA and NSGA-II are applied to perform single-and multi-objective optimisation to achieve maximum CO2 capture rate (CR) and minimum energy consumption (EC) with the optimal values of eight design variables. The R2 for the prediction of CR and EC is higher than 0.96 and the relative errors are lower than 5%. The M4 model has proven to be an efficient way to perform multi-variable and multi-objective optimisation, that significantly reduces computational time and resources while maintaining high prediction accuracy. The trade-off of the maximum CR and minimum EC is presented by the Pareto front, with the optimal values of 0.1014 kg h-1 for CR and 6.1855 MJ kg-1CO2 for EC. The calculated net cost of the most promising S-PBC configuration is around 400 $ t- 1CO2, which is about 100 $ t- 1CO2 lower than the net cost of current direct air capture (DAC), but compromised by slower CO2 capture rate.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Techno-economic performance of enhanced sodium carbonate-based CO2 capture process
    Melin, Kristian
    Hurskainen, Markus
    Nevander, Miia
    Kajolinna, Tuula
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2025, 141
  • [2] Techno-economic and environmental assessment of CO2 capture technologies in the cement industry
    Antzaras, Andy N.
    Papalas, Theodoros
    Heracleous, Eleni
    Kouris, Charalampos
    JOURNAL OF CLEANER PRODUCTION, 2023, 428
  • [3] Process Modeling and Techno-Economic Analysis of a CO2 Capture Process Using Fixed Bed Reactors with a Microencapsulated Solvent
    Kotamreddy, Goutham
    Hughes, Ryan
    Bhattacharyya, Debangsu
    Stolaroff, Joshua
    Hornbostel, Katherine
    Matuszewski, Michael
    Omell, Benjamin
    ENERGY & FUELS, 2019, 33 (08) : 7534 - 7549
  • [4] Techno-economic evaluation of buffered accelerated weathering of limestone as a CO2 capture and storage option
    De Marco, Serena
    Varliero, Selene
    Caserini, Stefano
    Cappello, Giovanni
    Raos, Guido
    Campo, Francesco
    Grosso, Mario
    MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 2023, 28 (03)
  • [5] Data-driven surrogate modelling and multi-variable optimization of trickle bed and packed bubble column reactors for CO2 capture via enhanced weathering
    Xing, Lei
    Jiang, Hai
    Wang, Shuo
    Pinfield, Valerie J.
    Xuan, Jin
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [6] Physics-based and data-driven hybrid modelling and optimisation of stirred-slurry reactors for CO2 capture via enhanced weathering of dolomite mineral
    Zhao, Yalun
    Wang, Mingliang
    Xuan, Jin
    Chang, Dengao
    Li, Ziming
    Wang, Shiyu
    Ou, Yun
    Wang, Xu
    Xing, Lei
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2025, 14
  • [7] Techno-economic modelling and cost functions of CO2 capture processes
    Klemes, J
    Bulatov, I
    Cockerill, T
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 295 - 300
  • [8] Techno-economic modelling and cost functions of CO2 capture processes
    Klemes, Jiri
    Bulatov, Igor
    Cockerill, Tim
    COMPUTERS & CHEMICAL ENGINEERING, 2007, 31 (5-6) : 445 - 455
  • [9] A porous phenolic resin sorbent for enhanced CO2 capture: Synthesis, optimization, and techno-economic analysis
    Abdalla, Mahmoud A.
    Zentou, Hamid
    Abdulhamid, Mahmoud A.
    Mohammed, Mohammed G.
    Abdelnaby, Mahmoud M.
    Abdelaziz, Omar Y.
    FUEL, 2025, 379
  • [10] Techno-economic analysis of the Ca-Cu process integrated in hydrogen plants with CO2 capture
    Riva, Leonardo
    Martinez, Isabel
    Martini, Michela
    Gallucci, Fausto
    Annaland, Martin van Sint
    Romano, Matteo C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (33) : 15720 - 15738